Homotopical algebra Exercise Set 8

16.04.2018

Exercise 3 is to be handed in on 23.04.2018.

- 1. Let (M, WE, Cof, Fib) be a model category. Let $A \in Ob M$. Show that there are model structures on M/A and A/M with respect to which the forgetful functors $M/A \to M$ and $A/M \to M$ preserve the three distinguished classes of morphisms.
- 2. Let C be a bicomplete category, and let S be a class of maps in C. For any non-empty ordinal λ , seen as ordered set and thus also as a category, and any functor $F: \lambda \to \mathsf{C}$ such that $F(\alpha) \to F(\alpha+1)$ is in S for every $\alpha+1 < \lambda$, the canonical map $F(0) \to \operatorname{colim}_{\lambda} F$ is called a transfinite composite of morphisms in S.
 - (a) Show that $\mathrm{LLP}(S)$ is closed under coproducts and under transfinite composites.
 - (b) Formulate and prove the dual statement for RLP(S).
- 3. Let (M, WE_1, Cof_1, Fib_1) and (M, WE_2, Cof_2, Fib_2) be model categories such that $WE_1 \subseteq WE_2$ and $Fib_1 \subseteq Fib_2$. Prove that there is a model structure (M, WE, Cof, Fib) with $WE = WE_2$ and $Fib = Fib_1$.
- 4. Find three distinct model structures on the category Set.
- 5. Prove that there is a model structure on Cat for which the weak equivalences are equivalences of categories and the cofibrations are functors that are injective on objects.