## Homotopical algebra Exercise Set 7 (revised version)

## 09.04.2018

## Exercise 2 is to be handed in on 16.04.2018.

1. Let  $K_{\bullet}$  be a simplicial set. Prove that there is a natural isomorphism of simplicial sets

$$\coprod_{n\geq 0} K_n \times \Delta[n]/ \sim \xrightarrow{\cong} K_{\bullet},$$

where  $(x, Y(\delta^i)(\xi)) \sim (d_i x, \xi)$  and  $(x, Y(\sigma^j)(\zeta)) \sim (s_j x, \zeta)$  for all  $x \in K_n$ ,  $\xi \in \Delta[n-1]_m$ ,  $\zeta \in \Delta[n+1]_m$ ,  $0 \le i, j \le n$ , and  $m, n \ge 0$ . (Here, Y denotes the Yoneda functor from  $\Delta$  to sSet.)

- 2. In this exercise we study the simplicial analog of the topological mapping space.
  - (a) Let  $K_{\bullet}$  and  $L_{\bullet}$  be simplicial sets. Explain how to define the faces and degeneracies of a simplicial set  $\operatorname{Map}(K_{\bullet}, L_{\bullet})_{\bullet}$  with

$$\operatorname{Map}(K_{\bullet}, L_{\bullet})_n = \operatorname{sSet}(K_{\bullet} \times \Delta[n], L_{\bullet}),$$

using the maps  $\delta^i$  and  $\sigma^j$ .

- (b) Prove that for any simplicial set  $K_{\bullet}$ , the functors  $-\times K_{\bullet}$  and  $\operatorname{Map}(K_{\bullet}, -)$  are adjoint.
- (c) Use (b) and the Yoneda Lemma to prove that there is a natural isomorphism of simplicial sets

$$\operatorname{Map}(J_{\bullet}, \operatorname{Map}(K_{\bullet}, L_{\bullet})) \cong \operatorname{Map}(J_{\bullet} \times K_{\bullet}, L_{\bullet}),$$

for all simplicial sets  $J_{\bullet}, K_{\bullet}, L_{\bullet}$ .

3. Show that for all  $m,n\geq 0$  and  $f\in \Delta(m,n),$  there exist unique sets of integers

$$n \ge i_1 > \dots > i_k \ge 0$$
 and  $0 \le j_1 < \dots < j_l \le m$ 

such that

$$f = \delta^{i_1} \cdots \delta^{i_k} \sigma^{j_1} \cdots \sigma^{j_l},$$

where n - k + l = m.

- 4. The goal of this exercise is to introduce and study the elementary properties of the *nerve functor*,  $N_{\bullet}: \mathsf{Cat} \to \mathsf{sSet}$ .
  - (a) Let Poset denote the category of posets (partially ordered sets), and let Cat denote the category of small categories. Define a functor  $\iota: \mathsf{Poset} \to \mathsf{Cat}$  such that  $\mathsf{Ob}\,\iota(P,<) = P$  and that is *faithful*, i.e., injective on morphisms. The functor  $\iota$  allows us to view any poset, such as the totally ordered set [n], as a category in a natural way.
  - (b) Let  $N_{\bullet}: \mathsf{Cat} \to \mathsf{sSet}$  be the functor defined by

$$\mathsf{N}_{ullet} \mathfrak{C} = \mathsf{Cat} ig( \iota(-), \mathfrak{C} ig) : oldsymbol{\Delta}^{op} o \mathsf{Set}.$$

Show that  $N_0 \mathcal{C} = \mathrm{Ob} \, \mathcal{C}$ , while for all n > 0,

$$\mathsf{N}_n \mathcal{C} = \{ C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} C_n \mid f_i \in \mathrm{Mor} \, \mathcal{C} \, \forall i \}.$$

Describe explicitly the face maps  $d_i: \mathsf{N}_n\mathcal{C} \to \mathsf{N}_{n-1}\mathcal{C}$ , the degeneracies  $s_j: \mathsf{N}_n\mathcal{C} \to \mathsf{N}_{n+1}\mathcal{C}$ , and the simplicial map  $\mathsf{N}_{\bullet}F: \mathsf{N}_{\bullet}\mathcal{C} \to \mathsf{N}_{\bullet}\mathcal{D}$  induced by a functor  $F: \mathcal{C} \to \mathcal{D}$ . What are the nondegenerate simplices of  $\mathsf{N}_{\bullet}\mathcal{C}$ ?

- (c) Show that  $N_{\bullet}\iota[n] \cong \Delta[n]$  for all  $n \geq 0$ .
- (d) Let  $\mathcal{B}: \mathsf{Gr} \to \mathsf{Cat}$  denote functor sending a group G to the category BG. The composite functor  $\mathsf{B}_{\bullet} = \mathsf{N}_{\bullet} \circ \mathcal{B}$  is the *simplicial bar construction*. Calculate  $\mathsf{B}_{\bullet}(\mathbb{Z}/2\mathbb{Z})$ . What are its nondegenerate simplices?
- (e) Apply the Yoneda Lemma to proving that the nerve functor induces a bijection

$$N_{ullet} : \mathsf{Cat}(\mathcal{C}, \mathcal{D}) \to \mathsf{sSet}(N_{ullet}\mathcal{C}, N_{ullet}\mathcal{D})$$

for all small categories  $\mathcal{C}$ ,  $\mathcal{D}$ .

5. Prove that there are homeomorphisms  $|\Delta[n]| \cong \Delta^n$  and  $|\partial \Delta[n]| \cong \partial \Delta^n \cong S^{n-1}$ .