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Abstract. Among the generalizations of Serre’s theorem on the homotopy groups

of a finite complex we isolate the one proposed by Dwyer and Wilkerson. Even

though the spaces they consider must be 2-connected, we show that it can be used to

both recover known results and obtain new theorems about p-completed classifying

spaces.

1. Introduction

In his celebrated paper in 1953 [22] Serre proved that a simply connected finite

CW -complex has infinitely many non-trivial homotopy groups. He conjectured that it

should actually have infinitely many non-trivial homotopy groups with 2-torsion. This

was proved by McGibbon and Neisendorfer in 1983 [18] by using Miller’s solution [19]

of the Sullivan conjecture. They show it happens for any simply connected CW -

complex with finite mod 2 cohomology, replacing thereby the geometric finiteness

condition by a purely algebraic one. Later, in 1986, Lannes and Schwartz [14] were

able to relax the finiteness condition to locally finite mod p cohomology, i.e. the

cohomology is a direct limit of finite unstable modules over the Steenrod algebra. So

they proved Serre’s conjecture for “Miller spaces”, that is, 1-connected spaces X for

which the space of pointed maps from BZ/p to X is contractible.

In 1990, Dwyer and Wilkerson [11] show the following generalization of Serre’s

conjecture. Let X be a 2-connected CW -complex of finite type with non trivial mod

p cohomology and such that the module of indecomposable elements in H∗(X;Fp) is

locally finite. Then infinitely many homotopy groups of X contain p-torsion. This

new algebraic condition obviously includes the previous ones, namely spaces with
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finite or locally finite mod p cohomology. Moreover their condition enables us to

study spaces with finitely generated mod p cohomology, because the indecomposable

module is then finite.

The cost in the Dwyer-Wilkersion theorem is that one has to work with 2-connected

spaces. As they say, “the example of CP∞ shows that it would not be enough to

assume that X is 1-connected”. We prove that this is basically the only simply

connected Postnikov piece with locally finite module of indecomposables.

Theorem 3.3 Let X be a p-complete CW -complex of finite type such that the

module QH∗(X;Fp) of indecomposable elements is locally finite. Then one of the

following properties is satisfied:

(1) X is aspherical,

(2) X〈1〉 is a K(Z∧
p , 2)

n,

(3) X has infinitely many homotopy groups with p-torsion.

In the last case moreover the space ΩX has infinitely many non-trivial k-invariants.

In particular we show that the Lannes-Schwartz result can be seen as a conse-

quence, see Corollary 3.4. In fact the above result can even be applied to understand

spaces having a non-trivial fundamental group, such as classifying spaces of discrete

groups. A very exciting problem in homotopy theory is to determine the behavior of

the p-completion of such BG’s. When G is a finite group Levi proves in [15] that ei-

ther (BG)∧p is again an Eilenberg-Mac Lane space or it has infinitely many non-trivial

homotopy groups. Later Bastardas and Descheemaker discovered the same phenome-

non holds for any virtually nilpotent group. This is done in [2] for torsion free groups

and the general case is solved in [1]. We show that all these results can be deduced

from our version of Dwyer-Wilkerson theorem and we obtain the same statement for

certain quasi p-perfect groups with finite virtual mod p cohomology and also for the

new concept of p-local finite group, due to Broto, Levi, and Oliver [8].

Theorem 5.1 Let X be the classifying space of a member of the following four

families:

(1) finite groups,

(2) p-local finite groups,
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(3) finitely generated virtually nilpotent groups,

(4) quasi p-perfect groups of finite virtual mod p cohomology.

Then the p-completion of X is either aspherical or it has infinitely many homotopy

groups with p-torsion. In this case moreover the space Ω(X)∧p has infinitely many

non-trivial k-invariants.

2. Local loop spaces

The theorem on which the whole paper is built relies on the equivalence between

the algebraic condition that the module of indecomposables QH∗(X;Fp) be locally

finite and the topological one that the loop space ΩX is BZ/p-local. The proof of

[11, Theorem 3.2] is done at the prime 2 for 1-connected spaces. Although this is

probably well-known to the experts, we give here an alternative proof for this result

that includes arbitrary connected spaces.

Lemma 2.1. Let X be a p-complete, connected space of finite type. Then QH∗(X;Fp)

is locally finite if and only if ΩX is BZ/p-local.

Proof. By [21, Proposition 3.9.7 and 6.4.5] QH∗(X;Fp) is locally finite if and only

if TV (H
∗(X;Fp))TV (c)

∼= H∗(X;Fp) for any elementary abelian p-group V . By [13,

Proposition 3.4.4], this is so if and only if Lannes’ T functor computes the cohomology

of map(BV,X)c. Therefore the above isomorphism can be restated by saying that

map(BV,X)c ' X, i.e. ΩX is BZ/p-local.

Observe that many interesting spaces verify the condition that the module of in-

decomposables is locally finite. Let us mention one class of examples taken from

Lannes, [13]. The second part of the proposition is a consequence of [13, Proposi-

tion 3.4.3] which states that the T -functor computes the cohomology of the corre-

sponding mapping space. Recall that a group verifies virtually a certain property if

it admits a subgroup of finite index which verifies the property.

Proposition 2.2. [13, p. 203] Let G be a group of virtually finite mod p cohomological

dimension. Then there is an isomorphism TH∗(G;Fp) ∼=
∏

ρ∈Rep(Z/p,G) H
∗(CG(ρ);Fp).

If moreover G has virtually finite mod p cohomology, then there is a weak equivalence

map(BZ/p,BG)∧p ' map(BZ/p, (BG)∧p ).
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Corollary 2.3. Let G be a group of virtually finite mod p cohomology. The space

Ω
(

(BG)∧p
)

is then BZ/p-local.

Proof. Consider the fibration map∗(BZ/p, (BG)∧p )→ map(BZ/p, (BG)∧p )→ (BG)∧p .

By the above result of Lannes we know that the total space is equivalent to the p-

completed mapping space map(BZ/p,BG)∧p , which can be in turn identified with the

p-completion of
∐

BCG(ρ), where the disjoint union is taken over the representations

Rep(Z/p,G), see for example [7, Proposition 7.1]. The base point here is given by the

trivial representation, i.e. lies in the classifying space of the trivial representation,

whose centralizer is G itself. Therefore we obtain by looping once the above fibration

that map∗(BZ/p,Ω(BG)∧p ) is contractible.

Example 2.4. A virtually nilpotent group G is by definition an extension of a finite

group Q by a nilpotent group N . We notice first that if G is finitely generated

one can always assume that N is torsion free since any finitely generated nilpotent

group is virtually torsion free. Finitely generated torsion free nilpotent group have

finite cohomological dimension, see for example [9, VIII.2]. We infer from the above

corollary that Ω(BG)∧p is BZ/p-local for any finitely generated virtually nilpotent

group G.

Consider the inclusion Op(Q) → Q of the maximal p-perfect subgroup of Q as

in [15] and construct the pull-back G′ = lim(Op(Q) → Q ← G). Since the quotient

Q/Op(Q) is a p-group P , the fibration BOp(Q) → BQ → BP is preserved by p-

completion, and so is the pull-backed one BG′ → BG → BP . Therefore (BG)∧p is

the total space of a fibration

(BG′)∧p - (BG)∧p - BP

where P is a finite p-group and G′ has a normal, finitely generated, torsion-free,

nilpotent subgroup N such that the quotient is p-perfect.

Remark that when G is virtually nilpotent, finitely generated, and torsion free, then

BG is an infra-nilmanifold so that the cohomology of G itself is finite dimensional.

In this case (BG)∧p is BZ/p-local (and so is its loop space of course).

The class of groups of finite virtual cohomological dimension is much larger than

that of virtually nilpotent ones, but we do not know if they are all Fp-good, which
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prevents us from being able to obtain our results in full generality. A well-known

class of Fp-good spaces is that with p-perfect fundamental group [5, Proposition 3.2].

Example 2.5. Let G be a p-perfect group of virtually finite mod p cohomology. Then

(BG)∧p is simply connected and Ω
(

(BG)∧p
)

is BZ/p-local. Examples of such groups

are given by the special linear groups SLn(Z) and the Steinberg groups Stn(Z), which
are even perfect groups. The homotopy groups of their p-completed classifying spaces

are closely related to the algebraic K-theory groups of Z.

Our next example is a slight generalization of the above. Recall that the lower

p-central series of a group G is defined inductively by Γp
0(G) = G and Γp

n+1(G) is

generated by elements of form xyx−1y−1zp for x ∈ G and y, z ∈ Γp
n(G). In particular

a group G is p-perfect if and only if G = Γp
1(G).

Example 2.6. In analogy with the terminology used by Wagoner in [23] and Loday

in [17], we say that a group G is quasi p-perfect if the subgroup Γp
1(G) is p-perfect.

This means that G is an extension of an elementary abelian p-group with a p-perfect

one. To make sure that BG is Fp-good we impose the following condition:

For any finite set g1, . . . , gn of elements in Γp
1(G) and g ∈ G there exists an element

h ∈ Γp
1(G) such that ggig

−1 = hgih
−1 for all 1 ≤ i ≤ n.

This actually converts (BG)∧p into a simple space, compare with [23, Lemma 1.3]. If

one requires that G has virtually finite mod p cohomology, one obtains new examples

of groups G such that Ω
(

(BG)∧p
)

is BZ/p-local.

Example 2.7. Let (S,F ,L) be a p-local finite group, as defined by Broto, Levi,

and Oliver in [8, Definition 1.8] and consider its classifying space |L|. We know

from [8, Theorem 5.8] that H∗(|L|;Fp) is noetherian and can be computed by stable

elements, just like the cohomology of an ordinary finite group. Therefore the module

of indecomposables is finite and hence Ω(|L|∧p ) is BZ/p-local by Lemma 2.1.

3. The Dwyer-Wilkerson theorem

We recall in this section the theorem of Dwyer and Wilkerson about homotopy

groups of 2-connected spaces with locally finite module of indecomposables. We
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explain then how it can be efficiently applied to understand certain spaces which are

not 2-connected by considering their 2-connected cover.

Theorem 3.1. [11, Theorem 1.3] Let X be a 2-connected CW -complex of finite type

with non-trivial reduced mod p cohomology such that the module QH ∗(X;Fp) of inde-

composable elements is locally finite. Then there exist infinitely many integers k such

that πkX contains p-torsion.

The following elementary lemma is the key to understand which are the spaces

which make it impossible to relax the connectivity assumption in the theorem.

Lemma 3.2. Let X = K(A, 2) be a p-complete space of finite type such that ΩX is

BZ/p-local. Then A is isomorphic to a finite direct sum of copies of Z∧
p .

Proof. Obviously A must be p-torsion free since ΩX ' K(A, 1) is assumed to be

BZ/p-local. As X has finite type we infer that H1(A;Fp), which is isomorphic to

H2(X;Fp), is finite. Hence by [4, Lemma 7.5] A is an abelian p-torsion free Ext-p-

complete group of finite type, i.e. A is isomorphic to a finite direct sum of copies

of Z∧
p (use Harrison’s classification [5, VI.4.5] or Bousfield’s comment on p-adically

polycyclic groups in [4, p. 347]).

Theorem 3.3. Let X be a p-complete CW -complex of finite type such that the module

QH∗(X;Fp) of indecomposable elements is locally finite. Then one of the following

properties is satisfied:

(1) X is aspherical,

(2) X〈1〉 is a K(Z∧
p , 2)

n,

(3) X has infinitely many homotopy groups with p-torsion.

In the last case moreover the space ΩX has infinitely many non-trivial k-invariants.

Proof. Let Y be the universal cover of X. Let us assume that X is not aspherical,

and consider the 2-connected cover Y 〈2〉 of Y , which can be seen as total space in a

fibration of spaces of finite type

K(π2Y, 1)→ Y 〈2〉 → Y
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If we loop once this fibration, we know that ΩY is a BZ/p-local space by [11,

Theorem 3.2]. Therefore Ω(Y 〈2〉) must be BZ/p-local as well since ΩK(π2Y, 1) is

homotopically discrete. This means precisely that the module of indecomposables

QH∗(Y 〈2〉;Fp) is locally finite. From Theorem 3.1 we infer that Y 〈2〉 (completed at

p) is either contractible or has infinitely many homotopy groups with p-torsion, i.e.

Y itself has infinitely many homotopy groups with p-torsion unless its p-completion is

an Eilenberg-Mac Lane space of type K(A, 2). In this case we infer from Lemma 3.2

that A is isomorphic to a finite direct sum of copies of Z∧
p .

The statement about the k-invariants is a direct consequence of Proposition 2.3.

Indeed if the loop space ΩX only has a finite number of non-trivial k-invariants there

exists an integer N such that the p-complete Eilenberg-Mac Lane space of finite type

K(πn(ΩX), n) is a retract for any n ≥ N . Therefore this Eilenberg-Mac Lane space

is BZ/p-local as well, which is only possible if n ≤ 2. This implies that all higher

homotopy groups are trivial and so X is aspherical by the first part of the theorem.

Since an unstable algebra which is locally finite as a module over the Steenrod

algebra obviously has also a locally finite module of indecomposable, the Dwyer-

Wilkerson condition truly generalizes the previously handleable cases. It is in fact

straightforward to obtain the Lannes-Schwartz theorem as a corollary.

Corollary 3.4. Let X be a simply connected CW -complex of finite type with non-

trivial and locally finite mod p cohomology. Then there exists an infinite number of

integers k such that πkX contains p-torsion.

Proof. Since X is a BZ/p-local space, so is its loop space ΩX. The previous propo-

sition applies and we conclude because the cohomology of K(Z, 2) is not locally

finite.

In view of Theorem 3.3 a good understanding of the Dwyer-Wilkerson statement

for arbitrary connected spaces goes through – compare with condition (2) – the study

of 2-stage Postnikov pieces. In Lemma 3.2 we have identified the second homotopy

group. As for the fundamental group we will assume that X is an Fp-good space, so

X∧
p is p-complete.
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By [10, Proposition 3.4] such spaces include all virtually nilpotent spaces (the action

of the fundamental group on any homotopy group is virtually nilpotent). Bousfield

characterizes the HFp-local spaces in [3, Theorem 5.5] in terms of their homotopy

groups, which implies in particular that the n-connected covers and the n-th Postnikov

sections of p-complete (and Fp-good) spaces are p-complete.

In short if X is a virtually nilpotent space, its p-completion X∧
p is an HFp-local

space, and its second Postnikov section Y = X∧
p [2] is a p-complete space with only

two homotopy groups. It can be seen as the total space of a fibration of the form

K(A, 2) - Y - K(G, 1)

where both K(A, 2) and K(G, 1) are p-complete spaces.

Lemma 3.5. Let X be a virtually nilpotent space of finite type. Then π1(X
∧
p ) is a

p-complete group isomorphic to (π1X)∧p . It is an extension of a finite p-group by a

nilpotent p-complete one.

Proof. The fundamental group G of X∧
p is isomorphic to that of K(G, 1)∧p by the

Whitehead type theorem [4, Proposition 4.1]. As the fundamental group of X is

a finitely generated virtually nilpotent group, it is in particular polycyclic-by-finite.

We conclude by Bousfield Fp-goodness result [4, Theorem 7.2] on polycyclic-by-finite

spaces that π1(X
∧
p )
∼= G∧

p .

It remains to describe this virtually nilpotent group. As in Example 2.4 we can

find normal subgroups N ≤ G′ ≤ G such that N is nilpotent, finitely generated, and

torsion free, the quotient Q = G′/N is p-perfect, and G/G′ is a finite p-group. We

will actually show that the inclusion N → G′ induces an epimorphism N∧
p → G′∧

p .

By [4, Lemma 5.2] we only need to check that it induces an epimorphism on the first

mod p homology group, i.e. the quotient by the first term of the mod p lower central

series. Notice that the quotient N/N ∩ Γp
1G

′ is isomorphic to G′/Γp
1G

′ because Q is

p-perfect. Therefore the maximal quotient of N which is an elementary abelian group

is at least as large as H1(G
′;Fp) and we are done.

Summing up this result with Lemma 3.2 we can now describe quite accurately the

p-complete 2-stage Postnikov pieces which have a BZ/p-local loop space.
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Proposition 3.6. Let X be a virtually nilpotent space of finite type with πn(X) = 0

for any n ≥ 3. Assume that QH∗(X;Fp) is locally finite. Then π1(X
∧
p ) is isomorphic

to (π1X)∧p , an extension of a finite p-group by a nilpotent p-complete group, and

π2(X
∧
p ) is isomorphic to a finite direct sum of copies of Z∧

p .

When the fundamental group is finite, it must be a p-group and we recover precisely

the class of 2-stage Postnikov systems studied by Grodal in [12].

4. Universal covers of p-completed spaces

In this section we identify explicitly for four different families of spaces the universal

covers of the p-completions, as p-completions of spaces inside the same family. We

start by reminding the well-known case of finite groups, see [15], even though the

next examples also contain all finite groups.

4.1. Finite groups. Let G be a finite group and Op(G) the maximal p-perfect sub-

group of G. This is a normal subgroup and the quotient P = G/Op(G) is a p-group.

Therefore the fibration BOp(G) → BG → BP is preserved by p-completion. Since

Op(G) is p-perfect (BOp(G))∧p is simply connected and thus is weakly equivalent to

the universal cover of (BG)∧p .

Hence for any classifying space of a finite group, the universal cover can be chosen,

up to p-completion, to be another classifying space.

4.2. p-local finite groups. Let (S,F ,L) be a p-local finite group as in Exam-

ple 2.7. We learn from [6, Theorem 4.4] that there exists a p-local finite group

(Op(S), Op(F), Op(L)) such that |Op(L)|∧p is the universal cover of |L|∧p .

Again we see that the universal cover can be chosen, up to p-completion, inside the

class of p-local finite groups.

4.3. Virtually nilpotent groups. For virtually nilpotent groups the idea to con-

struct the universal cover of (BG)∧p out of group theoretical information is already

present in the work of Bastardas, [1, Section 5.3].

Let G be a finitely generated virtually nilpotent group. As in Example 2.4 we can

find normal subgroups N ≤ G′ ≤ G such that N is nilpotent, finitely generated, and

torsion free, the quotient Q = G′/N is p-perfect, and G/G′ is a finite p-group. Hence
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πn(BG)∧p
∼= πn(BG′)∧p for all n ≥ 2. As we only wish to identify the universal cover,

we might as well assume from now on that G sits in an extension

N - G - Q

where Q is finite and p-perfect, and N is a nilpotent group, finitely generated, and

torsion-free. Recall from Lemma 3.5 that π1(BG)∧p
∼= G∧

p is a nilpotent group since

Q is p-perfect.

Lemma 4.1. Consider the fiberwise p-completion N∧
p → Ḡ → Q. The p-completion

homomorphism Ḡ→ Ḡ∧
p is then surjective.

Proof. The extension N → G→ Q gives rise to a fibration BN → BG→ BQ, which

can be fiberwise p-completed. Because (BN)∧p is weakly equivalent to the classifying

space of N∧
p , the total space X of the new fibration is the classifying space of some

group Ḡ. We have proven in Lemma 3.5 that the composite N∧
p → Ḡ → Ḡ∧

p is

surjective, thus so is Ḡ→ Ḡ∧
p .

Let us define now K as the kernel of the completion morphism Ḡ → Ḡ∧
p (the

intersection of all the terms in the mod p lower central series). In Theorem 4.3

we identify the universal cover of (BG)∧p as the p-completed classifying space of the

group K.

Proposition 4.2. There is a fibration (BK)∧p - (BḠ)∧p - B(G∧
p ).

Proof. We apply the “nilpotent action lemma” [10, 5.1] of Dwyer, Farjoun, and Kan

to the pair of fibrations BK → BḠ→ B(G∧
p ) and (BN)∧p → BḠ→ BQ. We deduce

from Lemma 4.1 that they induce an epimorphism Ḡ → G∧
p × Q. Because the p-

completion of a nilpotent group is nilpotent again, we deduce that the nilpotent group

G∧
p acts nilpotently on all homology groups Hn(BK;Fp). Therefore the nilpotent

fibration lemma [10, Proposition 4.2(i)] applies and we are done.

Theorem 4.3. Let G be a virtually nilpotent group which is an extension of a finite,

p-perfect group by a nilpotent, finitely generated, and torsion-free one. The space

(BK)∧p is the universal cover of (BG)∧p .
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Proof. One knows that the fundamental group of (BG)∧p is G∧
p ([4, Theorem 7.2]).

In view of the above proposition we only need to remark that BG → BḠ is an

HFp-equivalence (the p-completion N → N∧
p is so for N is nilpotent).

We note that K is virtually nilpotent as well, being a subgroup of a virtually

nilpotent one. We can even say more, since N∧
p is the p-completion of a finitely

generated torsion free nilpotent group: K is p-adically polycyclic-by-finite. In the

situation where G is actually finite, K coincides with Op(G), which is consistent with

the approach of Levi, compare with 4.1.

4.4. Quasi p-perfect groups. By definition, see Example 2.6, a group G is quasi

p-perfect if the subgroup Γp
1(G) is p-perfect. The fibration

BΓp
1(G) - BG - BH1(G;Fp)

is preserved under p-completion since H1(G;Fp) is an (elementary abelian) p-group

and BG is Fp-good. Hence the universal cover of (BG)∧p is
(

BΓp
1(G)

)∧

p
.

5. Homotopy groups of p-completed classifying spaces

We obtain in this section in a single proof the results which were known before

about p-completions of classifying spaces of finite groups (Levi) and virtually nilpotent

groups (Bastardas). We prove along the same lines a new result for quasi p-perfect

groups and p-local finite groups.

Theorem 5.1. Let X be the classifying space of a member of the following four

families:

(1) finite groups,

(2) p-local finite groups,

(3) finitely generated virtually nilpotent groups,

(4) quasi p-perfect groups of finite virtual mod p cohomology.

Then the p-completion of X is either aspherical or it has infinitely many homotopy

groups with p-torsion. In this case moreover the space Ω(X)∧p has infinitely many

non-trivial k-invariants.
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Proof. In view of the previous section it remains to prove that, up to p-completion,

K(Z, 2) cannot belong to any of the four families. Recall that its mod p cohomology

is polynomial on a generator in dimension 2, hence concentrated in even dimensions.

Therefore there are no Bocksteins at all, which means by an elementary Bockstein

spectral sequence argument that there is no p-torsion in the higher integral homology

groups.

We wish now to use a transfer argument to show that this cannot be the cohomology

of a space in any of the four families. When X is the classifying of a finite group,

choose Y to be the classifying space of the trivial subgroup. When X is the classifying

space of a virtually nilpotent group, we can assume as in 4.3 that X = BK and so

X∧
p is simply connected. Choose then Y to be the classifying space of the nilpotent

subgroup of finite indexK∩N∧
p , a subgroup of a group of finite homological dimension,

[9, VIII.2]). Finally when X is the classifying space of a quasi p-perfect group of

virtually finite mod p cohomology, we choose Y to be the classifying space of some

subgroup of finite index which has finite mod p cohomology. A standard transfer

argument shows now that in all three cases the multiplication by the (finite) index is

zero on high enough integral homology groups of X.

In case (2) we use the recent work [20] of Ragnarsson to get a transfer for p-local

finite groups. The mod p cohomology of a p-local finite group is contained as a

retract in the cohomology of its Sylow p-subgroup as a unstable subalgebra over the

Steenrod algebra [20, Proposition 9.4]. The cohomology of K(Z, 2) which has no

(higher) Bocksteins cannot be a retract of the cohomology of a finite group.

We wish to point out that the assumptions made on the virtually nilpotent group

could hardly be relaxed. For example if one drops the finitely generated hypothesis,

the result is obviously false, as shown by the well-known example of the Prüfer group:

(BZ/p∞)∧p ' K(Z∧
p , 2).

Let us mention that the p-completed classifying spaces of p-perfect groups of finite

virtual cohomological dimension have been studied by Levi. He proves in [16, Theo-

rem 1.4] that Ω(BG)∧p is a retract of some finite complex (which does not imply our

result).
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14. J. Lannes and L. Schwartz, À propos de conjectures de Serre et Sullivan, Invent. Math. 83

(1986), no. 3, 593–603.

15. R. Levi, On finite groups and homotopy theory, Mem. Amer. Math. Soc. 118 (1995), no. 567,

xiv+100.

16. , On p-completed classifying spaces of discrete groups and finite complexes, J. London

Math. Soc. (2) 59 (1999), no. 3, 1064–1080.
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