I. Galois meets Hopf

Recall: A field extension \(k \hookrightarrow E \) is Galois if it's algebraic, normal and separable. If \([E : k] < \infty\), then the extension is Galois if it's algebraic and \(k = \mathbb{E}(\text{Aut}_{E}(E)) \), the Galois group of the extension.

First generalizations:

- [Auslander-Goldman, 1960]: generalization to commutative rings
- [Chase-Harrison-Rosenberg, 1965]: six characterizations of Galois extensions of commutative rings, including:

\[R \hookrightarrow S \text{ is } G\text{-Galois for } G \leq \text{Aut}_R(S), |G| < \infty \]

\[\iff R \xrightarrow{G} S^G \text{ and } S \otimes_R S \xrightarrow{G} T_S \]

\[s \otimes s' \mapsto (s \cdot g(s'))_{g \in G} \]

Beyond group actions (and on to group schemes...)

- [Chase-Sweedler, 1969], [Kreimer-Takeuchi, 1981]:

\(k \) = commutative ring, \(\otimes = \otimes_k \)

\(H = k\text{-bialgebra} \)

\(B = k\text{-algebra with coaction } \rho : B \rightarrow B \otimes H \)

\(A = B^{coH} = \{ b | \rho(b) = b \otimes 1 \} \) algebra homomorphism, coassociative, counital
The extension of \(k \)-algebras \(A \hookrightarrow B \) is \(H \)-Hopf-Galois if
\[
B \otimes_A B \xrightarrow{B \otimes p} B \otimes B \otimes H \xrightarrow{\mu \otimes H} B \otimes H
\]
is an isomorphism. (the Galois map)

Examples:

1. \(k \hookrightarrow E \) field extension, \(G \leq \text{Aut}_k(E) \), \(|G| < \infty \), \(F = E^G \):
\[
F \hookrightarrow E \text{ is } G \text{-Galois}
\]
\[
k^G = \text{Hom}_k(k[G], k)
\]
\[
F \hookrightarrow E \text{ is } k^G \text{-Hopf-Galois}
\]

2. \(X \) finite set, \(G \) finite group, \(a : X \times G \rightarrow X \) action, \(q : X \rightarrow X_G = Y \), \(k \) field:
\[
X \times G \xrightarrow{\Delta \times G} X \times X \times G \xrightarrow{X \times a} X \times X \quad (*)
\]
\[
\Rightarrow \text{ extension } k^Y \xrightarrow{q^*} k^X \otimes k^G \text{ - coaction}
\]
\[
q \text{ is a } k^G \text{-Hopf-Galois extension}
\]
\[
(*) \text{ is an isomorphism}
\]
\[
a \text{ is a free } G \text{-action}
\]

3. \(H \) a \(k \)-bialgebra:
\[
k \hookrightarrow H \text{ is } H \text{-Hopf-Galois}
\]
\[
H \text{ is a Hopf algebra}
\]
More generally: a Hopf algebra \(A \otimes H \) is a \(H \)-Hopf-Galois algebra of normal basis type.

Why interesting?
- Faithfully flat \(H \)-extensions over the coordinate ring of an affine group scheme correspond to \(G \)-principal bundles (torsors).
- Can study Hopf algebras via associated \(H \)-extensions.

II. Grothendieck Framework

\[\varphi : A \rightarrow B \text{ ring homomorphism} \]
\[\Rightarrow \text{adjunction } \otimes_A B : \text{Mod}_A \xleftrightarrow{\sim} \text{Mod}_B \varphi^* \]

Informal Grothendieck descent problem

@ Given \(N_B \), when \(\exists M_A \) such that \(N \cong M_A \)?
@ Given \(f : M_A \otimes B \rightarrow M'_A \otimes B \), when \(\exists g : M \rightarrow M' \) homomorphism of \(A \)-modules s.t. \(f = g \otimes_A M' \)?

More formally

\[D(\varphi) = \text{category of descent data associated to } \varphi \]

Objects = pairs \((N, \Theta) \) with \(N \in \text{Mod}_B \),
\[\Theta : N \rightarrow \varphi^*(N) \otimes_A B \text{ - coassociative, counital} \]
3. Factorization: \[\text{Mod}_A \xrightarrow{\otimes_A B} \text{Mod}_B \]
\[\xrightarrow{\text{Can}} \xrightarrow{\mathcal{D}(\phi)} \text{Forget} \]
\[(M \otimes_A B, \theta_M) \]

\[M \otimes_A B \cong M \otimes_A A \otimes_A B \]
\[\xrightarrow{M \otimes_A \phi \otimes_A B} (M \otimes_A B) \otimes_A B \]
\[\theta_M \]

\(\phi \) satisfies effective Grothendieck descent if \(\text{Can}: \text{Mod}_A \rightarrow \mathcal{D}(\phi) \) is an equivalence.

\(\phi \) satisfies effective Grothendieck descent

\[\implies \text{have answers to } @ \text{ and } \otimes \text{ can realize objects and morphisms in } \text{Mod}_B \text{ when they underlie objects and morphisms in } \mathcal{D}(\phi). \]

\[III. \text{Quillen} \]

"Up-to-homotopy" versions of Hopf-Galois and Grothendieck theories.

Motivation:

[Roigne, 2008]: Galois theory of structured ring spectra.

One important extension that is not Galois but is Hopf-Galois:

\[S \rightarrow M \mathbb{U} \]

"Galois" and "Hopf-Galois" interpreted homotopically. Isomorphisms...
Grothendieck descent "up-to-homotopy" for morphisms of structured ring spectra also important, e.g., for studying completions.

Framework

- (N, \wedge, S) monoidal model category (nice enough)
- $\phi: A \rightarrow B$ morphism of monoids in N
- H bimonoid in N
- $\rho: B \rightarrow B \wedge H$ coaction st.

\[A \overset{\phi}{\rightarrow} B \wedge H \]

Notation: $A \overset{\phi}{\rightarrow} B^{\wedge H}$

Hopf-Galois data

Schwede-Shipley: Well understood conditions under which \exists Quillen model category structure on $\underline{\text{Mod}}_A, \underline{\text{Mod}}_B, \underline{\text{Alg}}$.

[H.-Shipley], [BHKKRS]:

New "left-induction" techniques \Rightarrow reasonable conditions guaranteeing existence of Quillen model category structure on $\underline{\Omega}(\phi), \underline{\text{Alg}}^H$.

Defn: $A \overset{\phi}{\rightarrow} B^{\wedge H}$ is a homotopic Hopf-Galois extension if:

- $A \overset{\phi}{\rightarrow} B^{\wedge H}$ Need model category structure on $\underline{\text{Alg}}^H$ to define this.

\[B \underset{A}{\wedge} B \overset{\phi \otimes_H}{\rightarrow} B \wedge H \overset{\mu^H}{\rightarrow} B^{\wedge H} \]

is a weak equivalence.
Defn. \(\varphi : A \to B \) satisfies effective homotopic Grothendieck descent if

\[\text{Can: } \text{Mod}_A \to \mathcal{D}(\varphi) \]

is a Quillen equivalence.

Example: \(\mathbb{k} \)-commutative ring,

\(H \) - 1-connected dg \(\mathbb{k} \)-bialgebra,

degree-wise \(\mathbb{k} \)-projective

\(E \) - dg \(H \)-comodule algebra

\([H \text{-Levi}]: \Omega_2(-; H; -) : \text{Alg}^H \times H \text{Alg} \to \text{Alg} \)

- the two-sided cobar construction

Proposition: [Berglund - H.]

\[\Omega(E; H; \mathbb{k}) \to \Omega(E; H, H) \]

Homotopic normal basis extension

is homotopic \(H \)-Hopf-Galois and satisfies effective homotopic Grothendieck descent.

It's not a fluke that this morphism both is HG and satisfies descent!

**IV. All together now! \[\varphi =
\]

Theorem: Let \(H \) be as above. Let \(\varphi : A \to B^H \) be \[\text{Berglund-H.} \]

Hopf-Galois data such that \(A \to B^H \)

Then:

\(\varphi \) is htpic \(H \)-Hopf-Galois \(\iff \) \(\varphi \) satisfies effective htpic Grothendieck descent.

| Proof by reducing to normal extension. |
Remarks: • Schneider proved a result with a similar flavor in the classical context.
 • Rognes proved analogous results for commutative ring spectra.

And Koszul?

Recall: A Koszul algebra A has a Koszul dual coalgebra C such that $A \cong \text{Mod}_A \cong \text{Comod}_C$.

Corollary: Given a $A \rightarrow B$ as above.

If $B \cong \mathbb{k}$, then H is a generalized Koszul dual of B, i.e.,

$\text{Ho}(\text{Mod}_B) \cong \text{Ho}(\text{Comod}_H)$.

Example: $E \cong \mathbb{k}$ ⇒ H is a generalized Koszul dual of $\Omega(E, \mathbb{H}, \mathbb{k})$.
