I. Descent from a homotopical viewpoint

A. Classical descent theory [Mesablishvili]

\(\phi: A \to B \) ring homomorphism

\[\Rightarrow \text{adjunction} \quad - \otimes_A B : \text{Mod}_A \rightleftarrows \text{Mod}_B : \phi^* \]

Informal descent problem (Realizability!)

(a) Given \(N \in \text{Mod}_B \), under what conditions \(\exists M \in \text{Mod}_A \) such that \(N \cong M \otimes_A B ? \)

(b) Given \(f: M \otimes_A B \to M' \otimes_A B \), under what conditions \(\exists g: M \to M' \)

The formal framework

* The descent co-ring associated to \(\phi \):

\[W_\phi = (B \otimes_A B, \delta_\phi, \epsilon_\phi) \quad \text{(explain!)} \]

* \(\mathcal{D}(\phi) = \) the category of descent data for \(\phi \)

 * \(\text{Ob} \ \mathcal{D}(\phi) = W_\phi \)-comodules in \(\text{Mod}_B \)

 * \(\text{Mor} \ \mathcal{D}(\phi) : \) preserve obvious structure

* Functors: Extension of scalars factors through \(\mathcal{D}(\phi) \)

\[\text{Mod}_A \xrightarrow{- \otimes_A B} \text{Mod}_B \]

\[M \xleftarrow{\text{Can}_\phi} \mathcal{D}(\phi) \xrightarrow{u} (M \otimes_A B, \rho_M) \]

Rmv: Can be seen as a Tannakian realization problem wrt fiber functor \(- \otimes_A B\)
Defn: \mathcal{G} satisfies (effective) descent if Cone_g is fully faithful (resp. an equivalence of categories).

Formal descent problem

When does \mathcal{G} satisfy descent (⇒ answer to (b))? Effective descent (⇒ answer to (a) as well)?

Rmk: \mathcal{G} satisfies effective descent ⇒ $U : \mathcal{T}(\mathcal{G}) \to \text{Mod}_B$ solves the associated Tannakian realization problem, with associated "Galois co-group" $W_\mathcal{G}$.

2. **Classical monadic descent:** generalizing Grothendieck descent

Categorical preliminaries

A monad on a category \mathcal{C} consists of

- an endofunctor $T : \mathcal{C} \to \mathcal{C}$,
- a natural transformation $\mu : T \circ T \to T$, and
- a natural transformation $\eta : \text{Id}_\mathcal{C} \to T$ such that

$$
\begin{align*}
T^3X & \xrightarrow{\mu_{TX}} T^2X \\
T(\mu_X) & \downarrow \quad \downarrow \mu_X
\end{align*}
$$

and

$$
\begin{align*}
T^2X & \xrightarrow{T\mu_X} TX \\
T\eta_X & \downarrow \quad \downarrow \eta_X
\end{align*}
$$

commute if $X \in \text{Ob}\mathcal{C}$.

Notation: $\mathcal{T} = (T, \mu, \eta)$

Dually, a comonad on \mathcal{C} consists of $K : \mathcal{C} \to \mathcal{C}$,

$\Delta : K \to K^2$ and $\varepsilon : K \to \text{Id}_\mathcal{C}$ such that $\Delta K \circ \Delta = K \Delta \circ \Delta$ and

$\varepsilon \Delta = \text{Id}_K$.

Notation: $\mathcal{K} = (K, \Delta, \varepsilon)$
Exercise: Let \(L : \mathcal{B} \xrightarrow{\sim} \mathcal{C} : R \) be an adjunction. Show that \((RL, R\varepsilon_L, \eta)\) is a monad on \(\mathcal{B}\) and that \((LR, L\eta_R, \varepsilon)\) is a comonad on \(\mathcal{C}\), where
\[\eta : \text{Id}_\mathcal{B} \rightarrow RL \text{ and } \varepsilon : LR \rightarrow \text{Id}_\mathcal{C} \] are the unit and counit of the adjunction.

From (co)monads to adjunctions

- A monad on \(\mathcal{C}\) \(\Rightarrow\) category \(\mathcal{C}^\Pi\) of \(\Pi\)-algebras
 - With objects: \((A, m)\) where \(m : \Pi A \rightarrow A\) in \(\mathcal{C}\) st
 \[
 \begin{array}{ccc}
 \Pi^2 A & \xrightarrow{\Pi m} & \Pi A \\
 \downarrow \mu_A & & \downarrow m \\
 \Pi A & \xrightarrow{m} & A
 \end{array}
 \]
 and \(A \xrightarrow{\delta_A} \Pi A\) commute.

Exercise: Show that \((\Pi X, \mu_X)\) is a \(\Pi\)-algebra if \(X \in \text{Ob}\mathcal{C}\) and \((\Pi X, \mu_X)\) is the free \(\Pi\)-algebra on \(X\).

Show moreover that there is an adjunction

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\Pi^*} & \mathcal{C}^\Pi \\
A \longleftarrow & & \longleftarrow (A, m)
\end{array}
\]

Exercise: Let \(\varphi : A \rightarrow B\) be a ring hom. Let \(\Pi \varphi\) denote the monad on \(\text{Mod}_A\) associated to the adjunction \((- \otimes_A B) \xrightarrow{\varphi^*} -\). Show that \((\text{Mod}_A)^\Pi \varphi \leq \text{Mod}_B\).

Exercise: Show that the monad associated to \((\star)\) is \(\Pi\).

Exercise: Let \(K^\Pi\) denote the comonad on \(\mathcal{C}^\Pi\) associated to \((\star)\). Show that \(K^\Pi (A, m) = (\Pi A, \mu_A)\),
\[
(\Delta^\Pi)_{(A, m)} = \Pi \eta_A : (\Pi A, \mu_A) \rightarrow (\Pi^2 A, \mu_{\Pi A}) \text{ and } (\varepsilon^\Pi)_{(A, m)} = m : (\Pi A, \mu_A) \rightarrow (A, m).
\]
Exercise: Calculate K^{q} explicitly.

Dually ...

- K comonad on C \Rightarrow adjunction $C_{K} \xrightarrow{\text{F}_K} C$, where
 - C_{K} is the category of K-coalgebras, with objects (C,S), $S: C \to KC$ s.t. $\Delta_{C} \circ S = T S \circ S$ and $\varepsilon_{C} \circ S = \text{Id}_{C}$,
 - $F_{K} X = (KX, \Delta_{X})$ the cofree K-coalgebra on X
 - $U_{K} (C,S) = C$

Exercise: Let K_{q} denote the comonad associated to $(- \otimes B)^{q}$ for some ring homomorphism $q: A \to B$. Show that

$$(\text{Mod}_{B})_{K_{q}} \equiv \mathcal{B}(q).$$

Informal monadic descent problem

(a) When is a \mathcal{M}-algebra isomorphic to a free \mathcal{M}-algebra?

(Realizability)

(b) Given $f: (TX, \mu_{X}) \to (TY, \mu_{Y})$ in $C^{\mathcal{M}}$, when is there $g: X \to Y$ in C such that $f = Gg$?

The formal framework

- $X \xleftarrow{\text{can}^{T}} C_{\mathcal{M}} \xrightarrow{\text{F}_\mathcal{M}} C^{\mathcal{M}}$

- $\text{Can}^{\mathcal{M}}(TX, \mu_{X}, \eta_{X})(C_{\mathcal{M}})^{K_{\mathcal{M}}} = \mathcal{B}(\mathcal{M})$ - the category of \mathcal{M}-descent data.

(*) Exercise: Show that $\text{Can}^{\mathcal{M}}$ admits a right adjoint if C admits equalizers: $\text{Prin}^{\mathcal{M}}(A,m,S) = \text{lim} (A \xleftarrow{S \cdot m} TA)$.

Def: \mathcal{M} satisfies descent (resp. effective descent) if $\text{Can}^{\mathcal{M}}$ is fully faithful (resp. an equivalence of categories).
Formal descent problem

When does \mathcal{P} satisfy descent (⇒ answer to (b))? Effective descent (⇒ answer to (a) as well)?

Rmk: Descent data more highly structured than objects in \mathcal{C} and therefore, in principle, easier to compute and classify. The descent framework is also well suited to the study of rigidity problems.

Sometimes we need to work object by object...

Defn: \mathcal{P} satisfies descent at Y if

$$\text{Can}_T : \mathcal{C}(X,Y) \xrightarrow{\cong} \mathcal{D}(\mathcal{P})(\text{Can}^\pi X, \text{Can}^\pi Y) \forall X \in \text{Ob} \mathcal{C}.$$

Exercise: An object Y in \mathcal{C} is \mathcal{P}-injective if $y_Y : Y \rightarrow \mathcal{T}Y$ admits a retraction $\rho : \mathcal{T}Y \rightarrow Y$. In particular,

$$(A,m) \in \mathcal{C}^\mathcal{P} \mapsto A \text{ \mathcal{P}-injective, e.g., } A=\mathcal{T}x!$$

Show that: Y \mathcal{P}-injective \Rightarrow \mathcal{P} satisfies descent at Y,

as long as \mathcal{C} admits equalizers.

Hint: Use the bijection

$$\mathcal{D}(\mathcal{P})(\text{Can}^\pi X, \text{Can}^\pi Y) \cong \mathcal{C}(X, \text{Prm}^\pi \text{Can}^\pi Y).$$

Exercise: Characterize those A-modules at which \mathcal{P}_A satisfies descent, when $\mathcal{P} : A \rightarrow B$ is:

1. $\mathbb{Z} \rightarrow \mathcal{P}_\mathbb{Z}$ (reduction mod p)
2. $R \hookrightarrow R[x]$, for any commutative ring R
Dually...

Comonadic codescent

Let K be a comonad on C. Consider the diagram:

\[
\begin{array}{c}
E_K \xrightarrow{\eta_K} E \\
\downarrow \quad \downarrow \\
C \xrightarrow{\text{Can}_{ik}^{\text{co}}} C
\end{array}
\]

Where

- $\text{Can}_{ik}^{\text{co}}(X) = (KX, \Delta_X, KE_X)$

- $(C, S, m) \in \mathcal{D}^{\text{co}}(K) \iff$

- $m \text{ is a retraction of } S \text{ in } E_K$.

Def: K satisfies codescent (resp. effective codescent) if $\text{Can}_{ik}^{\text{co}}$ is fully faithful (resp. an equivalence of categories).

Exercise: Let $\phi : E \to B$ be a continuous map (e.g., \(\Pi \quad \eta \mapsto \eta \quad \phi \)). Consider the associated adjunction $\phi^*: \text{Top}/E \leftrightarrow \text{Top}/B$. Show that

- $\text{Top}/E \equiv (\text{Top}/B)_{K^\phi}$

- $\mathcal{D}(K^\phi) = (\text{Top}/E)^{\text{co}}_{K^\phi}$: objects can be viewed as $f : X \to E$ + $c : X \times E \to X \times B$ satisfying cooyde condition + normalization: gluing data!
B. Homotopic descent

Goal: Develop descent and co-descent theory in an "up-to-homotopy" form. A more elaborate version than that presented here, involving \(\mathcal{V} \)-model categories, has also been developed.

1) **Model categories of algebras and coalgebras**

Theorem: [Schwede-Shipley, 2000] Let \(\mathcal{M} \) be a cofibrantly generated model category with sets \(\mathcal{E} \) and \(\mathcal{M} \) of generating cofibrations and generating acyclic cofibrations, respectively. Let \(\mathcal{T} \) be a monad on \(\mathcal{M} \) such that \(\mathcal{T} \) commutes with filtered colimits.

If: i) the domains of \(F^\mathcal{T}(\mathcal{E}) \) and \(F^\mathcal{T}(\mathcal{M}) \) are small with respect to \(F^\mathcal{T}(\mathcal{E}) \)-cell and \(F^\mathcal{T}(\mathcal{M}) \)-cell, respectively, and

ii) \(U^\mathcal{T}(F^\mathcal{T}(\mathcal{M}) \text{- cell}) \subseteq \mathcal{W}_E \),

then \(\mathcal{M}^\mathcal{T} \) admits a cofibrantly generated model category structure with sets \(F^\mathcal{T}(\mathcal{E}) \) and \(F^\mathcal{T}(\mathcal{M}) \) of generating cofibrations. In particular,

\[
\mathcal{W}_E \mathcal{M}^\mathcal{T} = (U^\mathcal{T})^{-1}(\mathcal{W}_E \mathcal{M}) \quad \text{and} \quad \mathcal{Fib}_{\mathcal{M}^\mathcal{T}} = (U^\mathcal{T})^{-1}(\mathcal{Fib}_\mathcal{M}),
\]

whence

\[
F^\mathcal{T}: \mathcal{M} \to \mathcal{M}^\mathcal{T}: U^\mathcal{T}
\]

is a Quillen pair.

Remark: Hypothesis (ii) can be replaced by:

(iii) every object of \(\mathcal{E} \) is fibrant and every \(\mathcal{T} \)-algebra has a path object.

Before stating the existence theorem for model category structure on categories of coalgebras, need another category-theoretic notion.
Def: A category \mathcal{C} is **locally presentable** if
\begin{itemize}
 \item[i)] \mathcal{C} is small cocomplete;
 \item[ii)] \exists set $S \subseteq \text{Ob} \mathcal{C}$ such that every object is the colimit of a diagram of objects in S;
 \item[iii)] every object in S is small wrt $\text{Mor} \mathcal{C}$;
 \item[iv)] $\mathcal{C}(X,Y)$ is a set $\forall X,Y \in \mathcal{C}$.
\end{itemize}

Def: A model category is **combinatorial** if it is cofibrantly [Smith] generated and locally presentable.

Examples:
- $s\text{Set}$ with either Kan or Joyal model structure
- $d\text{Set}$
- $\text{Ch}^{\infty}_{\mathbb{R}}$ with the projective model structure

Non-example: Top is cofibrantly generated but not combinatorial.

Proposition: [Adámek-Rosický] If \mathcal{C} is locally presentable and \mathcal{T} is a monad on \mathcal{C} such that \mathcal{T} preserves filtered colimits, then $\mathcal{C}^\mathcal{T}$ is also locally presentable.

Corollary: Under the hypotheses of the Schwede-Shipley theorem, if \mathcal{M} is combinatorial, so is $\mathcal{M}^\mathcal{T}$.

What about categories of coalgebras?

Observations:
1) For any comonad \mathcal{K} on a category \mathcal{C}, colimits in $\mathcal{C}^\mathcal{K}$ are created in \mathcal{C}. In particular, if \mathcal{C} is cocomplete, so is $\mathcal{C}^\mathcal{K}$. (*Exercise!*)

2) Since $\mathcal{F}^\mathcal{K}$ is a right adjoint, it’s easy to calculate limits in $\mathcal{C}^\mathcal{K}$ of diagrams in the image of $\mathcal{F}^\mathcal{K}$, e.g., $\mathcal{F}^\mathcal{K}(X \times Y) \cong \mathcal{F}^\mathcal{K}(X) \times \mathcal{F}^\mathcal{K}(Y)$. But other limits??
Lemma: [Adámek-Rosicky] Let K be a comonad on a well-powered (e.g., locally presentable) category C. If K preserves monomorphisms, then C_{K} is complete.

Lemma: [Barr-Wells] Let K be a comonad on a complete category C. If K commutes with countable inverse limits, then C_{K} is complete.

The following construction dual to ()-cell is crucial to proving the existence of model category structure for categories of coalgebras.

Defn. Let \mathcal{X} be a class of morphisms in a complete category C. An \mathcal{X}-Pastnikov tower is the composition

$$\lim_{\beta < \lambda} Y_{\beta} \to Y_{0}$$

of a tower $Y_{\beta}: \lambda^{\mathcal{X}} \to C$ for some ordinal λ, i.e.,

$$\ldots \to Y_{\beta+1} \xrightarrow{q_{\beta+1}} Y_{\beta} \to \ldots \to Y_{2} \xrightarrow{q_{2}} Y_{1} \xrightarrow{q_{1}} Y_{0},$$

where for every $\beta < \lambda$, $\exists \phi_{\beta+1}: X_{\beta+1} \to X_{\beta} \in \mathcal{X}$ and $k_{\beta}: Y_{\beta} \to X_{\beta}$ such that

$$Y_{\beta+1} \xrightarrow{q_{\beta+1}} \downarrow \phi_{\beta+1} \downarrow \leftarrow \downarrow \downarrow k_{\beta} \downarrow \leftarrow \downarrow q_{\beta+1} \downarrow \leftarrow \downarrow Y_{\beta} \xrightarrow{k_{\beta}} X_{\beta}.$$

If β is a limit ordinal, then $Y_{\beta} = \lim_{\gamma < \beta} Y_{\gamma}$.

Notation: $Post_{\mathcal{X}} = \{ \text{\emph{\\mathcal{X}}}\text{-}\text{Pastnikov towers}\}$.

- $\forall y \in \text{Mor} C \Rightarrow \hat{y} = \text{retract-closure of } y$.
Definition: A Postnikov presentation of a class \(\mathcal{Q} \subseteq \text{Mor} \mathcal{M} \) in a category \(\mathcal{M} \) is a class \(\mathcal{Q} \) such that \(\mathcal{Q} = \text{Post} \mathcal{Q} \).

Theorem: [Bayeh-H-Karpova-Kedzior-Riehl-Shipley] Let \(\mathcal{M} \) be a combinatorial model category such that \(\text{Fib}_\mathcal{M} \cap \text{WE}_\mathcal{M} \) admits a Postnikov presentation via \(\mathcal{Q} \subseteq \text{Mor} \mathcal{M} \). Let \(K \) be a comonad on \(\mathcal{M} \) such that \(K \) preserves filtered colimits and monomorphisms or countable inverse limits. If \(U_{\mathcal{K}} (\text{Post} \mathcal{Q}_K) \subseteq \text{WE}_\mathcal{M} \), then \(\mathcal{M}_K \) admits a model category structure with

\[
\text{WE}_{\mathcal{M}_K} = U^{-1}_{\mathcal{K}}(\text{WE}_\mathcal{M}), \quad \text{Cof}_{\mathcal{M}_K} = U^{-1}_{\mathcal{K}}(\text{Cof}_\mathcal{M}) \quad \text{and} \quad \text{Fib}_{\mathcal{M}_K} \cap \text{WE}_{\mathcal{M}_K} = \text{Post} \mathcal{Q}_K.
\]

In particular, \(U_{\mathcal{K}} : \mathcal{M}_K \xrightarrow{\sim} \mathcal{M} : F_{\mathcal{K}} \) is a Quillen pair.

Remark on the proof: Relies heavily on a very recent result of Mukai and Rosicky, on the existence of left-induced weak factorization systems.

Corollary: Let \(\mathcal{M} \) be a combinatorial model category with sets \(\mathcal{E} \) and \(\mathcal{J} \) of generating cofibrations. Let \(\mathcal{P} \) be a monad on \(\mathcal{M} \) such that \(\mathcal{P} \) preserves filtered colimits and monomorphisms or countable inverse limits. Let \(\mathcal{Q} \subseteq \text{Mor} \mathcal{M}^{\mathcal{P}} \) satisfy \((U^{\mathcal{P}})^{-1}(\text{Fib}_\mathcal{M} \cap \text{WE}_\mathcal{M}) = \text{Post} \mathcal{Q} \).

If

i) \(F^\mathcal{P}(\mathcal{E}), F^\mathcal{P}(\mathcal{J}) \) small wrt \(F^\mathcal{P}(\mathcal{E}) \)-cell, \(F^\mathcal{P}(\mathcal{J}) \)-cell, resp;

ii) \(U^\mathcal{P}(\mathcal{F}(\mathcal{J}) \text{-cell}) \subseteq \text{WE}_\mathcal{M} \), and

iii) \(U^\mathcal{P} U_{\mathcal{K}^\mathcal{P}} (\text{Post} F_{\mathcal{K}^\mathcal{P}}(\mathcal{Q})) \subseteq \text{WE}_\mathcal{M} \),

then \(\exists \) Quillen pair \(U_{\mathcal{K}^\mathcal{P}} : \mathcal{M}_K \xrightarrow{\sim} \mathcal{M}^{\mathcal{P}} : F_{\mathcal{K}^\mathcal{P}} \).
Remarks: 1) Both $\mathcal{D}(\mathbb{F})$ and $\mathcal{M}(\mathbb{F})$ are combinatorial, with

$$WE_{\mathcal{D}(\mathbb{F})} = (\mathcal{U}_{\mathcal{D}(\mathbb{F})})^{-1}(\mathcal{U}_{\mathcal{D}(\mathbb{F})})^{-1}(WE_{\mathbb{F}})$$

and

$$WE_{\mathcal{M}(\mathbb{F})} = (\mathcal{U}_{\mathcal{M}(\mathbb{F})})^{-1}(WE_{\mathbb{F}}).$$

2) [H-Shipley] Different conditions for existence of model category structure on $\mathcal{M}_{\mathbb{F}}$, relying on a sort of “stability” in \mathbb{F} and a filtration of $WE_{\mathbb{F}}$ that is appropriately compatible with \mathbb{F}.

Example: Let $g : A \rightarrow B$ be a morphism of non-negatively graded, dg \mathbb{F}-algebras such that $- \otimes_A B$ preserves monomorphisms (i.e., degree-wise injective maps), e.g., B is A-semifree as a left A-module. Since colimits in \mathcal{M}_A and \mathcal{M}_B are created in $\mathcal{Ch}_{\mathbb{F}}^{>0}$, $T_B = g^*(- \otimes_A B)$ preserves all colimits. Moreover, conditions i) and ii) can easily be seen to hold (cf. [Schwede-Shipley]). It remains thus only to determine conditions under which condition iii) also holds.

For example, if B is A-semifree on a graded \mathbb{F}-module of finite type, then all limits in $\mathcal{D}(\mathbb{F}) = \mathcal{D}(g)$ are created in \mathcal{M}_B, so an argument based on the Mittag-Leffler condition shows easily that \exists Quillen pair

$$U : \mathcal{D}(g) \leftarrow \rightarrow \mathcal{M}_B.$$

2) Homotopic descent

Henceforth: \mathcal{M} a model category, \mathbb{F} a monad on \mathcal{M} such that \exists diagram of Quillen pairs

\[
\begin{array}{ccc}
\mathcal{D}(\mathbb{F}) & \leftarrow \rightarrow & \mathcal{M}^\mathbb{F} \\
\mathcal{M} & \leftarrow \rightarrow & \mathcal{M} \end{array}
\]

with weak equivalences created in \mathcal{M}.
Recall/Defn: Let \mathcal{M} be a model category. The simplicial localization of \mathcal{M} is a simplicial enrichment of \mathcal{M}, denoted $\Map_{\mathcal{M}}((-,-))$, such that
\[
\begin{align*}
X' & \overset{\sim}{\longrightarrow} X, \\
Y & \overset{\sim}{\longrightarrow} Y',
\end{align*}
\implies \Map_{\mathcal{M}}(X,Y) \overset{\sim}{\longrightarrow} \Map_{\mathcal{M}}(X',Y').
\]
and $\pi_0 \Map_{\mathcal{M}}(X,Y) \cong \Ho(\mathcal{M})(X,Y) \cong [X^c, Y^c]$.
\Map_{\mathcal{M}}(X,Y)$ is the derived mapping space.

Remark: The simplicial localization of a model category always exists, and there are many weakly equivalent ways of constructing the derived mapping space, e.g., by [Dugger]:

\[\Map^h_{\mathcal{M}}(X,Y) = \text{Nerve}(X \xleftarrow{\sim} \xrightarrow{\sim} Y), \text{ if } X \text{ cofibrant.} \]

(Need to be a little careful about smallness…)

Defn: The monad Θ satisfies homotopic descent if
\[
\Map^h_{\mathcal{M}}(X,Y) \overset{\sim}{\longrightarrow} \Map^h_{\Theta(\mathcal{M})}(\text{Can}^\pi X, \text{Can}^\pi Y)
\]
if X,Y bifibrant.

Remark: The simplicial map of derived mapping spaces above arises from the functor
\[
(X \xrightarrow{\sim} W \leftarrow \sim Y) \longmapsto (\text{Can}^\pi X \longrightarrow \text{Can}^\pi W \leftarrow \sim \text{Can}^\pi Y)
\]
where we use that Can^π is a left Quillen functor to deduce that $\text{Can}^\pi X$ is cofibrant (so that (**) applies) and that the map from $\text{Can}^\pi Y$ to $\text{Can}^\pi W$ is an acyclic cofibration.

Defn: The monad Θ satisfies effective homotopic descent if
\[
\text{Can}^\pi: \mathcal{M} \longrightarrow \Theta(\mathcal{M}) \text{ is a Quillen equivalence.}
\]

Remark: If Θ satisfies effective homotopic descent, then it also satisfies homotopic descent. Indeed,
\[
\text{Can}^\pi \text{ Quillen equivalence} \Rightarrow \tilde{\eta}_X: X \overset{\sim}{\longrightarrow} \text{Prim}^\pi(\text{Can}^\pi X), \forall X \text{ cofib.}
\]
so \(\exists \text{ diagram in } s\text{Set} \updownarrow X,Y \text{ bifibrant in } M \)

\[
\begin{align*}
\text{Map}^h (X,Y) \overset{\sim}{\longrightarrow} \text{Map}^h_M (X, \text{Prim}^\Pi (\text{Can}^\Pi X)^f) \\
\downarrow \sim M \uparrow \sim \quad \text{[Dwyer-H.]}
\end{align*}
\]

\[
\begin{align*}
\text{Map}^h_{\Theta(\Pi)} (\text{Can}^\Pi X, \text{Can}^\Pi Y) \overset{\sim}{\longrightarrow} \text{Map}^h_{\Theta(\Pi)} (\text{Can}^\Pi X, (\text{Can}^\Pi Y)^f).
\end{align*}
\]

Questions: How to determine when (effective) homotopic descent satisfied? What does it mean?

Basic observations: \(\Pi \) satisfies effective homotopic descent

\[
\begin{align*}
\text{(Using known characterization of Quillen equivalence)}
\end{align*}
\]

\[
\begin{align*}
\text{Realizability!}
\end{align*}
\]

\[
\begin{align*}
\text{Basic observations: } \Pi \text{ satisfies effective homotopic descent}
\end{align*}
\]

\[
\begin{align*}
\Rightarrow & \quad \tilde{\eta}_X : X \overset{\sim}{\longrightarrow} \text{Prim}^\Pi (\text{Can}^\Pi X)^f \quad \text{if } X \text{ cofibrant} \\
\text{and}
\end{align*}
\]

\[
\begin{align*}
\Rightarrow & \quad (A,m,\xi) \overset{f}{\longrightarrow} (A',m',\xi') \in \text{WE}_{\Theta(\Pi)} \iff \text{Prim}^\Pi f \in \text{WE}_{\Theta(\Pi)}
\end{align*}
\]

\[
\begin{align*}
\text{and}
\end{align*}
\]

\[
\begin{align*}
\Rightarrow & \quad \varepsilon (A,m,\xi) : \text{Can}^\Pi (\text{Prim}^\Pi (A,m,\xi))^c \overset{\sim}{\longrightarrow} (A,m,\xi) \quad \text{if } f \text{ fibrant}
\end{align*}
\]

\[
\begin{align*}
\Rightarrow & \quad X, X' \text{ cofibrant in } M \Rightarrow \text{rigidity problems!}
\end{align*}
\]

\[
\begin{align*}
\text{3) The descent spectral sequence: tool for studying homotopic descent, interpolating backwards along } \text{Map}^h_{\Theta(\Pi)} (X,Y) \overset{\sim}{\longrightarrow} \text{Map}^h_{\Theta(\Pi)} (\text{Can}^\Pi X, \text{Can}^\Pi Y)
\end{align*}
\]

Need more structure on \(M \) to do computations...

Defn. A simplicial model category consists of an \(s\text{Set} \)-enriched category \(M \) that is tensored and cotensored over \(s\text{Set} \) such that the underlying (ordinary) category \(M_0 \) is endowed with a model category structure, compatible with the enrichment in the sense that

\[
\begin{align*}
\text{(SMC): } i : A \overset{\longrightarrow}{\longrightarrow} X, \phi : E \longrightarrow B \Rightarrow (i^* \phi) : \text{Map} (X,E) \longrightarrow \text{Map} (A,E) \times \text{Map} (X,B)
\end{align*}
\]

\[
\begin{align*}
\text{(m.c.) } i : A \overset{\longrightarrow}{\longrightarrow} X, \phi : E \longrightarrow B \Rightarrow (\phi^* i) : \text{Map} (A,X) \longrightarrow \text{Map} (A,B)
\end{align*}
\]

\[
\begin{align*}
\text{Recall tensoring, cotensoring, etc.}
\end{align*}
\]
Rmk: If \(M \) is a simplicial model category, then
\[
\text{Map}^h_{M}(X,Y) \simeq \text{Map}^c(X^c,Y^c) \quad \forall X,Y \in \text{Ob}B.
\]

Defn: Let \(M \) be a simplicial model category. The totalization functor
\[
\text{Tot}: M^\Delta \rightarrow M
\]
(Need only cohesion for defn.)
is defined on objects by
\[
\text{Tot}(X^\bullet) = \text{equal } \left(\coprod_{n \geq 0} (X^n)^{\Delta[n]} \rightarrow \prod_{k,n \geq 0} (X^k)^{\Delta[n]} \right).
\]

Key properties:
1) \(X^\bullet \text{ Reedy fibrant} \Rightarrow \text{Tot} X^\bullet \text{ fibrant in } M. \)
2) \(\text{Tot}(cc^\bullet X) \simeq X \quad \forall X \in \text{Ob}M. \) (Exercise!)
3) \(cc^\bullet X \leftrightarrow Y^\bullet 2^\Delta \) "external" SDR in \(M^\Delta \)
\[
\Rightarrow X \simeq \text{Tot} Y^\bullet.
\]

Proof by
dualization of classical result
by J.-P. Meyer.

The descent SS associated to a monad \(\Pi \) is a special case of the following type of SS.

Defn: \([\text{Bousfield-Kan}]\) Let \(Y^\bullet \) be a Reedy fibrant cosimplicial simplicial object. The extended homotopy SS associated to \(Y^\bullet \) has
\[
E_{2}^{st} = \Pi^{s} \Pi^{t} Y^\bullet \quad \forall t \geq s \geq 0
\]

(in particular: \(t \geq 2 \Rightarrow E_{2}^{st} = H^\bullet(N_{*}(\Pi_{*} Y^\bullet)) \))
and abuts to (subtle convergence issues!)
\[
\Pi_{*}(\text{Tot} Y^\bullet).
\]

The cosimplicial simplicial set to which we apply the BKSS construction is defined as follows, for any monad on a simplicial model category \(M. \)

Rmk: \(M \) simplicial model cat \(\Rightarrow \) \(\text{H}(\Pi) \) simplicial in general (cohesion issues).
Def: Let \(Y \in \text{Ob} \, M \). The \(\mathcal{T} \)-cobar construction on \(Y \),
\[\Omega^*_{\mathcal{T}} Y \in oM^A, \] is defined by
\[\Omega^*_{\mathcal{T}} Y = (TY \overset{\mu}{\longrightarrow} T^2Y \overset{\mu}{\longrightarrow} T^3Y \overset{\mu}{\longrightarrow} \cdots) \]
(Exercise: Check that the cosimplicial identities hold.)

Remark: \(\exists \, \eta^* : ccY \longrightarrow \Omega^*_{\mathcal{T}} Y \) \(\forall \, Y \in M \)

If \(Y = U^*(Y,m) \), then \(\eta^* \) fits into an external SDR
\[ccY \overset{m}{\longleftarrow} \Omega^*_{\mathcal{T}} Y \overset{p}{\longrightarrow} \]
and so \(Y = \text{Tot} \, \Omega^*_{\mathcal{T}} Y \). Also, \(\exists \) external SDR in \((M^\pi)^A\)

Input data for the \(\mathcal{T} \)-descent SS

\[\begin{align*}
\circ \, f : X & \longrightarrow Y \in M, \text{ where } X \text{ cofibrant} \\
\circ \, j : \Omega^*_{\mathcal{T}} Y & \longrightarrow \hat{Y}^*, \text{ where } \hat{Y}^* \text{ is Reedy fibrant and levelwise } \mathcal{T} \text{-injective.}
\end{align*} \]

Always levelwise \(\mathcal{T} \)-injective.

Lemma: If \(U^* : \mathcal{C} \longrightarrow \mathcal{C} \) preserves acyclic cofibrations, then \(\hat{Y}^* \) exists \(\forall \, Y \in \text{Ob} \, M \).

Def: The \(\mathcal{T} \)-descent spectral sequence at \(f \) is the BKSS of the cosimplicial simplicial set \(\text{Map}_{oM}(X, \hat{Y}^*) \), pointed at \(j \circ \eta^* \circ cc^* f \)

Notation: \(E^q_f \)

Interpretation:

\[(Ef)^q : \text{Map}_{oM}(X, \hat{Y}^*) \cong \text{Map}_{oM} \left(X, (\text{Prim}^\pi \text{Can}^\pi)^A \hat{Y}^* \right) \]

Using result of [Dwyer-Hess], or since \(X \) cofib, \(Y^A \) fib \(\forall \, n \)

So:
\[(E^q_f)^{s,t} \cong \text{Map}_{\mathcal{D}(\mathcal{T})}^h (\text{Can}^\pi X, (\text{Can}^\pi)^A \hat{Y}^*) \].
Let's analyze the target component, assuming \(\Pi \) is simplicial.

\[cc \colon \text{Can}^{\Pi Y} \to (\text{Can}^{\Pi})^\Delta \Omega^\ast_{\Pi Y} \to (\text{Can}^{\Pi})^\Delta \hat{Y} \quad \text{in } \mathscr{O}(\Pi)^\Delta \]

is a cosimplicial injective resolution, i.e.,

- \((\text{Can}^{\Pi})^\Delta \hat{Y} \) is Reedy fibrant and levelwise injective wrt to the monad associated to \(U_{\text{li}^\Pi} \colon \mathscr{O}(\Pi) \xrightarrow{\sim} M^{\Pi} \colon F_{\text{li}^\Pi} \), with underlying functor \(\psi \)

\[
(A, m, s) \mapsto (FA, \mu_A, T_A);
\]

- \(U_{\text{li}^\Pi} \text{Can}^{\Pi Y} = F^{\Pi Y} \simeq \text{Tot} (F^{\Pi})^\Delta \Omega^{\ast}_{\Pi Y} = \text{Tot} (U_{\text{li}^\Pi} \text{Can}^{\Pi})^\Delta \Omega^{\ast}_{\Pi Y} \)

and under reasonable hypotheses \(\simeq \) e.g., \(Y \) fibrant and \(\Pi \) preserves fibrant objects and \(\mathcal{E} \) eq. between fibrants.

So under good conditions

\[F^{\Pi Y} \simeq \text{Tot} (F^{\Pi})^\Delta \hat{Y}, \]

justifying

\[(E^\Pi)^{\text{set}} = \text{Ext}^{\text{set}}_{\mathscr{O}(\Pi)} (\text{Can}^{\Pi Y}, \text{Can}^{\Pi Y}). \]

\[(E^\Pi)^{\infty} : \text{Tot Map}_{\mathcal{M}} (X, \hat{Y}) \simeq \text{Map}_{\mathcal{M}} (X, \text{Tot} \hat{Y}) \simeq \text{Map}_{\mathcal{M}} (X, \text{Prim}^{\Pi} (\text{Can}^{\Pi Y})^{f}) \]

\(\text{Tot} \hat{Y} \) can be seen as a \(\mathcal{T} \)-completion of \(Y \) in the following sense, which doesn't require the full strength of simplicial model categories.

- A morphism \(f \colon X \to Y \) in \(\mathcal{M} \) is a \(\mathcal{T} \)-equivalence if

\[\text{Map}_{\mathcal{M}} (Y, \mathcal{U}^\ast (A, m)) \simeq \text{Map}_{\mathcal{M}} (X, \mathcal{U}^\ast (A, m)) \]

for all \((A, m) \in M^{\Pi}\) such that \((A, m)\) fibrant, i.e., \(A \) fibrant in \(\mathcal{M} \).

Exercise: Let \(f \colon X \to Y \in \mathcal{M} \), where \(X, Y \) cofibrant. Prove that

\[\mathcal{T} f \in \mathcal{WE}_{\mathcal{M}} \Rightarrow f \text{ a } \mathcal{T} \text{-equivalence and that the converse holds if } \mathcal{M} \text{ is a simplicial model category.} \]
An object \(Z \) in \(M \) is \(\Pi \)-complete if
\[
f : X \to Y \ \Pi\text{-equivalence} \Rightarrow f^* : \text{Map}^\Pi_{\mathcal{D}}(Y, Z) \to \text{Map}^\Pi_{\mathcal{D}}(X, Z).
\]

Exercise: Show that:
(i) \((A, m) \in \mathcal{D}^\Pi \Rightarrow A \ \Pi\text{-complete} \)
(ii) \(W \ \text{retract of } Z, Z \ \Pi\text{-complete} \Rightarrow W \ \Pi\text{-complete} \)
(iii) \(i) + ii) \Rightarrow \text{every } \Pi\text{-injective object is } \Pi\text{-complete} \)
(iv) \(Z, Z' \ \text{weakly equivalent} \Rightarrow \)
\(Z \ \Pi\text{-complete} \iff Z' \ \Pi\text{-complete} \).

Lemma: \(Z^\cdot \in \mathcal{D}^\Pi \) Reedy fibrant such that \(Z^n \ \Pi\text{-complete} \) then
\[\Rightarrow \text{Tot } Z^\cdot \ \Pi\text{-complete} \]
Here we assume that \(M \) is a simplicial model category.

Thus, under our hypotheses, \(\text{Tot } \hat{Y}^\cdot \) is indeed \(\Pi\text{-complete} \).

Notation: \(Y^\wedge = \text{Tot } \hat{Y}^\cdot \).

Conclusion: The \(\Pi\)-descent SS at \(f \) abouts to
\[\Pi^* \text{Map}_{\mathcal{D}^\Pi}(X, Y^\wedge) \approx \text{Map}_{\mathcal{D}^\Pi}(X, \text{Prim}^\Pi(\text{Can}^\Pi Y) f).\]

So the \(\Pi\)-descent SS can be seen as "interpolating backwards" from the target of \(\text{Map}^\Pi_{\mathcal{D}^\Pi}(X, Y) \to \text{Map}^\Pi_{\mathcal{D}^\Pi}(\text{Can}^\Pi X, \text{Can}^\Pi Y) \) to its source. It's therefore a tool for measuring deviation from satisfying homotopic descent.

Example: Let \(\varphi : A \to B \) be a monoid morphism in a monoidal model category such that \(\varphi(\varphi) \) admits a model category structure of the sort studied above.

Then \(\Omega^\cdot_{\varphi} \mathcal{M} \) is the well-known Amitsur complex.
If \(\Omega^\cdot_{\varphi} \mathcal{M} \) is Reedy fibrant, so that we may choose
completion of M along \mathfrak{F} (cf. e.g., [Carlsson]).

The \mathfrak{F}-descent SS looks like:

$$\text{Ext}_{\mathfrak{F}(q)}^{st}(\langle M@B, \rho_M \rangle, \langle N@B, \rho_N \rangle)$$

$$\Rightarrow \quad \pi_{t-s} \text{Map}_{\text{Mod}_A}(M, N@) \quad \text{indecomposables}.$$

Special cases:

1) $\eta: I \rightarrow B \Rightarrow$ Adams-type SS

2) $A \xrightarrow{\varepsilon} I \Rightarrow$ Quillen-homotopy SS

$$\text{Ext}_{\mathfrak{F}(q)}^{st}(M@Q, N@Q) \Rightarrow \pi_{t-s} \text{Map}_{\text{Mod}_A}(M, N@) \quad \text{htpy indecomposables}.$$

Remarks: 1) One should be able extract an "obstruction theory à la Bousfield" for measuring obstructions to realizing a \mathfrak{F}-alg as a free \mathfrak{F}-algebra and to realizing a morphism between free \mathfrak{F}-alg as an element of $\text{Im} F^\mathfrak{F}$ from the \mathfrak{F}-descent SS.

2) A dual theory of homotopic co-descent and an associated SS. Applied to the Ganea comonad, one should be able to use this machinery to study approximations to LS-category.

Example: Let $p: P@B \rightarrow B$ be a Kan fibration in sSet, where $P@B \simeq$. Consider $\phi: \text{sSet}/P@B \xrightarrow{\eta} \text{sSet}/B : \phi$. The canonical co-descent datum associated to $X \in P@B \xrightarrow{\phi@} \text{htpy@}(f) \rightarrow P@B$, where htpy is the Kan loop gp on B. The associated comonad htpy satisfies homotopic co-descent: $\text{Map}_{\text{sSet}/B}(f, q) \Rightarrow \text{Map}_{\text{sSet}(I\text{htpy})}(\text{htpy@}(f), \text{htpy@}(q)) \Rightarrow \text{htpy Kan fib}$.

II. Homotopic Hopf-Galois extensions

A. Classical Hopf-Galois extensions [Chase-Sweedler], [Kreimer-Takeuchi]

Hopf-Galois data. Dualizing the notion of a Galois extension...

- k commutative ring
- H - a k-bialgebra
- A - a k-algebra with trivial H-coaction
- B - an H-comodule algebra with coaction $\rho : B \to B \otimes H$
- $\varphi : A \to B$ - a morphism of H-comodule algebras

Associated homomorphisms

- The Galois map
 \[B \otimes_A B \xrightarrow{B \otimes_A \rho} B \otimes_A B \otimes H \xrightarrow{\tilde{\mu} \otimes H} B \otimes H \]
 \[\beta \varphi \]

- The corestriction map
 \[A \xrightarrow{\lambda \varphi} B^\co H = B \square_H k = \{ beB | \rho(b) = b \otimes 1 \} \]

Defn: $\varphi : A \to B^2 H$ is a Hopf-Galois extension if $\beta \varphi$ and $\lambda \varphi$ are both isomorphisms.

Examples: 1) Let G be a finite group, $G < \text{Aut}_k(E)$ for some field extension $k \subset E$. Let $F = E^G$.

Then: $F \hookrightarrow E$ is a G-Galois extension

$\iff F \hookrightarrow E$ is a k^G-Hopf-Galois extension,

where $k^G = \text{Hom}_k(k, E)$.

[Montgomery]
2) Let \(r : X \times G \to X \) be an action of a finite group on a finite set. Let \(Y = X_G = \) the set of \(G \)-orbits, and let \(q : X \to Y \) denote the quotient map.

Consider: \(X \times X \xrightarrow{\Delta \times G} X \times X \times X \times G \xrightarrow{\times r} X \times X \xrightarrow{\times r} X \times X \)

Let \(\mathbb{k} \) be a field. Let \(\mathbb{k}^G \) be defined as above, while \(\mathbb{k}^X = \text{Set} (X, \mathbb{k}) \), \(\mathbb{k}^Y = \text{Set} (Y, \mathbb{k}) \), endowed with pointwise + and \(\cdot \).

\[\Rightarrow \text{Hopf-Galois data} \quad \mathbb{k}^Y \xrightarrow{q^*} \mathbb{k}^X \overset{\alpha}{\rightarrow} \mathbb{k}^G \]

Exercise: \(q^* \) is a \(\mathbb{k}^G \)-Hopf-Galois extension

\[\iff \alpha \text{ is a bijection} \]

\[\iff \text{the action } r \text{ is free.} \]

(Show that \(\beta_{q^*} = \alpha^* \).)

3) Let \(H \) be a \(\mathbb{k} \)-bialgebra, seen as an \(H \)-comodule algebra over itself. Consider \(q^H = \eta : \mathbb{k} \to H \).

Then: \(\eta \) is clearly an iso.

\[H \otimes H \xrightarrow{\Delta \otimes H} H \otimes H \otimes H \xrightarrow{H \otimes \mu} H \otimes H \]

By \(\beta \), \(H \) is a Hopf algebra.

More generally, if \(H \) is a Hopf algebra, then

\[\Delta_{\otimes H} : A \leftrightarrow A \otimes H \]

is an \(H \)-Hopf-Galois extension, of normal basis type.
Why algebraists care about HG-extensions
- Generalization of Galois theory
- Faithfully flat HG-extensions over coordinate ring of an affine group scheme correspond to G-principal fiber bundles
- Can study Hopf algebras via their associated HG-extensions

Why homotopy theorists might care

[Regnér] The unit map \(\eta: S \to \text{MU} \) is a homotopic HG-ext over \(S[\text{BU}] \), which is NOT a homotopic Galois extension for any group \(G \).

B. Homotopic HG-extensions

1) Co-rings and their comodules

Let \((V, \otimes, I)\) be a monoidal category. If \((A, \mu, \eta)\) is a monoid in \(V \), then \((A\text{-}\text{Mod}_A, \otimes_A, A)\) is also a monoidal category.

Defn: An \(A \)-co-ring is a comonoid in \(A\text{-}\text{Mod}_A \), i.e., \((V, S, \varepsilon)\) where:
- \(V \) is an \(A \)-bimodule,
- \(S: V \to V \otimes_A V \) coassociativity and
- \(\varepsilon: V \to A \) counitality.

Defn: Let \((V, S, \varepsilon)\) be a \(V \)-co-ring. An \textit{\(A \)-right \(V \)-comodule} consists of \((M, \rho)\) where \(M \in A\text{-}\text{Mod}_A \) and
\[
\rho: M \to M \otimes_A V \in A\text{-}\text{Mod}_A
\]
such that \((M \otimes_A S) \rho = (\rho \otimes_A V) \rho\), \((M \otimes_A \varepsilon) \rho = \text{Id}_M \).

Notation: \(V^A \) = category of \(A \)-right \(V \)-comodules in \(A\text{-}\text{Mod}_A \).
Remark: \(A = I \Rightarrow A \text{Mod}_A = V \) and an \(A \)-co-ring is just a
comonoid in \(V \).

\(V = A \Rightarrow V^A \cong \text{Mod}_A \).

Remark: If \((V, \delta, \epsilon)\) is an \(A \)-co-ring, then \((- \otimes_A V, - \otimes_A \delta, - \otimes_A \epsilon)\)

is a comonad on \(\text{Mod}_A \), so can apply \([BHKCRS]\) thm
to get model cat structure.

Important adjunctions

\(\text{The forgetful/cofree adjunction} \)

\[V^A_A \xleftarrow{\Delta} \text{Mod}_A \xrightarrow{\epsilon} V^A \]

(Special case of the adjunction below, for \(g = \epsilon \))

\(\epsilon \) is the “restriction of coefficients” adjunction

\[V^A_{V} \xrightarrow{g_*} V^W \]

where \(V(M, \rho) \in \text{Ob} \, V^W \),

\[\rho \circ V = \text{equal}(M \otimes V_A \xrightarrow{\rho \circ V} M \otimes V' \otimes V) \]

\(-\text{computed in } V^A \).

Homotopy theory

Suppose now that \((M, \otimes, I)\) is a monoidal model category, which
is combinatorial and such that every object in \(M \) is small
relative to \(\text{Mor} \, M \).

Let \(A \) be a monoid in \(M \), and let \(V \) be an co-ring such that

\(- \otimes_A V \) preserves monos.

Let \(I \) denote the set of generating acyclic cofibrations of \(M \).
If \((f \otimes A) \text{-} \text{cell} \subseteq WE\), then by the Schwede-Shipley theorem

\[\exists \text{Quillen pair } \mathcal{M} \xleftarrow{\perp} \text{Mod}_A \]

with \(\text{Fib}_{\text{Mod}_A} = U^*(\text{Fib}_A), \text{WE}_{\text{Mod}_A} = U^*(\text{WE}_A)\)

\[\text{Cof}_{\text{Mod}_A} = (f \otimes A) \text{-} \text{cell}. \]

If \(\exists y \subseteq \text{Fib}_{\text{Mod}_A} \cap \text{WE}_{\text{Mod}_A} \) st \(\text{Fib}_{\text{Mod}_A} \cap \text{WE}_{\text{Mod}_A} = \text{Post}_y\), then by the HKKRS theorem:

\[U(\text{Post}_y \otimes V) \subseteq WE \implies \exists \text{Quillen pair } U : V^V \xleftarrow{\perp} \text{Mod}_A : - \otimes V \]

with \(\text{WE}_{V^V} = U^*(\text{WE}_{\text{Mod}_A})\)

\[\text{Cof}_{V^V} = U^*(\text{Cof}_{\text{Mod}_A}) \]

\[\text{Fib}_{V^V} \cap \text{WE}_{V^V} = \text{Post}_y \otimes V. \]

Remark: Henceforth we always assume (*) holds for \(A\), and we consider only co-rings for which (**) holds.

Note that if (**) holds for \(V, W\), then any morphism of co-rings \(g : V \to W\) gives rise to a Quillen pair

\[V^V \xleftarrow{\perp} W. \]

In particular, \(\exists \text{Quillen pair } \text{Mod}_A \xleftarrow{\perp} V^V\)

If coaugmented co-rings \(V\).

Example: \(M = \text{Ch}_{f \geq 0}^R\), \(A\) any dg \(R\)-algebra, \(V\) an \(A\)-co-ring that’s semi-free as a left \(A\)-module on a generating graded \(k\)-module of finite type

\(\implies\) have the desired model cat structure on \(V^V_A\).
2) Homotopify the H^--framework

The data $\varphi: A \to B \otimes H$ that satisfies the monoid axiom:

- H is a bimonoid with comultiplication $\Delta: H \to H \otimes H$
- A is a monoid, seen as an H-comodule with trivial coaction $A \xrightarrow{\delta} A \otimes H$
- B is an H-comodule monoid with coaction $p: B \to B \otimes H$, which is a monoid morphism
- $\varphi: A \to B$ is a morphism of H-comodule monoids.

Example: Continuation of the previous example ... -

Recall: $\Omega(M; C; N)$ where C dg coalg, M right C-comod, N left C-comodule.

Let H be a dg Hopf algebra, and let E be a right H-comodule algebra.

Proposition: [H-Levi] The multiplication on E extends naturally to $\Omega(E; H; \mathbb{k})$ and to $\Omega(E; H; H)$ so that the inclusion $\Omega(E; H; \mathbb{k}) \hookrightarrow \Omega(E; H; H)$ is H^--data.

- a homotopically normal basis extension

Associated co-rings:

- The canonical (or descent) co-ring: $W_{\varphi} = (B \otimes B, S_{\varphi}^1, e_{\varphi})$
 - already seen in very first lecture.

- The Hopf co-ring: $W_{\rho} = (B \otimes H, B \otimes \Delta, B \otimes e_{H})$, with B-actions $B \otimes W_{\rho} \xrightarrow{\delta_{\otimes H}} B \otimes H$

and $W_{\rho} \otimes B \xrightarrow{W_{\rho} \otimes p} W_{\rho} \otimes B \otimes H \xrightarrow{\sim} B \otimes B \otimes H \otimes H \xrightarrow{\Delta_{\otimes H}} B \otimes H$.
The Hopf-Galois map \[B \otimes_A B \xrightarrow{\beta^g} B \otimes H \]

is a morphism of \(B \)-co-rings. (Exercise!)

Introducing homotopy

Henceforth assume \(q^g: A \to B, H \) are such that \(E \) Quillen pairs

\[M_B^{\text{Wq}} \xrightarrow{\perp} \text{Mod}_B \xleftarrow{\perp} M_B^{\text{Wp}} \]

and

\[\text{Mon}^H \xleftarrow{\perp} \text{Mon} \]

wrt to model category structures of the type discussed above.

Consequently, \(E \) Quillen pair \(\text{Mon} \xleftarrow{\perp} \text{Mon}^H \).

Defn: A model for the homotopy coinvariants of a \(H \)-comod monoid \((B, \rho)\) is \(((B, \rho)^f)^{\text{coH}} \) for some fibrant replacement of \((B, \rho)\) in \(\text{Alg}^H \). Notn: \((B, \rho)^{\text{coH}}\)

Example (cont.): \(\Omega(E; H; H) \) is a functorial fibrant replacement of \(E \) in \(\text{Alg}^H \) (cf. [H-Shipley]).

Consequently, \(E^{\text{coH}} = \Omega(E; H; H) \).

Defn: The homotopy corestriction map

\[A \cong (A)^{\text{coH}} \xrightarrow{q^g} B^{\text{coH}} \xrightarrow{(B^f)^{\text{coH}}} \]

\[\text{Lq} \]
Putting it all together...

Defn: \(\varphi : A \rightarrow B^2 \) is a homotopic \(H \)-Hopf-Galois extension if

\[
\begin{array}{c}
M^W_B \\ W_B^p \\
\end{array}
\xleftarrow{\mathbf{BG}^p} \quad \begin{array}{c}
\mathbf{M}^W_B \\ W_B^p \\
\end{array} \quad \text{and} \quad \begin{array}{c}
\mathbf{Mod}^A \\ l_{\varphi}^* \\
\end{array}
\xrightarrow{\mathbf{BG}^p} \quad \begin{array}{c}
\mathbf{Mod}^B \\ B^2 \ker H \\
\end{array}
\]

are Quillen equivalences.

Example (cont.) \(\varphi : \Omega(E_j; H; \mathbb{k}) \rightarrow \Omega(E_j; H; H) \)

\(\bullet \) Since \(\Omega(E_j; H; H) \) is fibrant in \(\text{Alg}^H \), can take \(\Omega(E_j; H; H) \cong \Omega(E_j; H; \mathbb{k}) \), i.e., \(l_{\varphi} \) is an isomorphism.

\(\bullet \) \(\Omega(E_j; H; H) \otimes \Omega(E_j; H; \mathbb{k}) \xrightarrow{\mathbf{BG}^p} \Omega(E_j; H; H) \otimes \mathbb{k} \)

So \(\varphi \) is even a strict \(H \)-HG-extension and thus a homotopic HG-extension, since \(\Omega(E_j; H; H) \) is fibrant in \(\text{Alg}^H \).

Example: Let \(H \) be a simplicial monoid, seen as a simplicial bimonoid via the diagonal map.

Let \(A \) be a simplicial monoid.

Let \(B \) be a fibrant \(H \)-comodule monoid, i.e., a simplicial monoid endowed with a simplicial \(H \)-action \(\phi : B \rightarrow H \) that is also a Kan fibration.

Let \(\varphi : A \rightarrow B \) be a simplicial \(H \)-action \(\phi \), i.e., \(\varphi \) is a principal fibration.

Remark: If \(M = C_{\mathbb{k}} \), \(B \) is left \(A \)-semifree of finite type, and \(H \) is degreewise \(\mathbb{k} \)-free of finite type, then the desired model category structures exist on \(\text{Alg}^H \), \(M_B^W \), and \(M_B^W \), since \(W_B^p, W_B^p \) are then both \(B \)-semifree of finite type.
Properties of homotopic HG-extensions [Karpova]

Framework: $\mathcal{M} = Ch_{\simeq}^{>0}_{k}$

(Properties analogous to those proved by Rognes for homotopic Galois extensions of ring spectra.)

Theorem: Let $\varphi: A \to B_\varphi$ and $f: A \to A'$ be morphisms of commutative dg k-algebras such that B and A' are left A-semifree of finite type. In the pushout diagram

$$
\begin{array}{ccc}
A & \rightarrow & A' \\
\downarrow \varphi & & \downarrow \tilde{\varphi} \\
B & \rightarrow & A' \otimes_k B
\end{array}
$$

if φ is a homotopic H: HG-extension, then so is $\tilde{\varphi}$.

Conversely...

Theorem: Under the same hypotheses as above, if A' is faithfully flat over A, then:

φ homotopic H: HG \Rightarrow $\tilde{\varphi}$ homotopic H: HG.

Currently in progress: one direction of a Hopf-Galois correspondence, i.e., $\varphi: A \to B_\varphi$ homotopic HG-extension

\Rightarrow (quotients of H \Rightarrow subextensions of φ).

Rmk: Under appropriate connectivity-nilpotency and finite-type conditions, any morphism of commutative dg algebras can be replaced up to quasi-isomorphism by a semifree extension of the type required in the theorems above. So, up to homotopy, the semifreeness hypothesis is not a real constraint.
From Grothendieck to Hopf and Galois via Koszul

Goal: To understand the big picture relating homotopic Grothendieck descent to homotopic Hopf-Galois extensions, at least for \(M = CH_{\mathbb{Q}} \), though the results stated here almost certainly hold more generally.

First we need one more notion: blending algebras and coalgebras.

A. Generalized Koszul duality

Motivation:

Let \(A \) and \(C \) be a dg \(\mathbb{k} \)-algebra and a dg \(\mathbb{k} \)-coalgebra, respectively. A twisting cochain from \(C \) to \(A \) is a \(\mathbb{k} \)-linear map

\[
t : C_* \rightarrow A_{*-1}
\]

of degree \(-1\) such that \(d_A t + t d_C = \mu(t \otimes t) \Delta \).

Key property: \(Alg(\Omega C, A) \leftrightarrow Tw(C, A) \leftrightarrow Coalg(C, BA) \)

\[
\alpha_t \leftrightarrow t \leftrightarrow R_t
\]

Theorem: [Lefèvre] If \(t : C \rightarrow A \) is a twisting cochain such that \(\alpha_t \) (equiv. \(R_t \)) is a quasi-isomorphism, then \(\exists \) Quillen equivalence

\[
-\otimes_C A : M^C \rightleftarrows M^A : -\otimes \mathbb{k} C \quad (!)
\]

In particular, if \(A \) is Koszul and \(C \) is its Koszul dual, then \(\exists \) Quillen equivalence \((!)

Example: Universal examples: \(M^C \rightleftarrows M^B_C \), \(M^{BA} \rightleftarrows M^A \).

Def: A coalgebra \(C \) is a generalized Koszul dual of \(A \) if \(\exists \) Quillen equivalence \(M^C \rightleftarrows M^A \).
B. Grothendieck vs Hopf-Galois

For any underlying monoidal (model) category, we have

\[
\begin{array}{ccc}
A \xrightarrow{\Phi} & B & \\
\uparrow & & \uparrow \\
A \xrightarrow{\Phi} & B^{\text{Gal}} & \\
\downarrow & & \downarrow \\
B^{\text{H}} & & \\
\end{array}
\xrightarrow{\text{Mon}}
\xrightarrow{\text{HopfGalois}}
\xrightarrow{\text{CoRing}}
\xrightarrow{\text{Hopf}}
\xrightarrow{\text{W_\Phi} = (B \otimes_A B, \delta_\Phi, \epsilon_\Phi)}
\xrightarrow{\text{W_\Phi} = (B \otimes H, B \otimes A, B \otimes e_A)}
\]

The following two theorems describe the precise relationship between homotopic Grothendieck descent and HG-extensions, at least when \(M = \text{Ch}^{20}_{\text{Ch}} \).

Theorem I: Let \(\Phi : A \xrightarrow{\Phi} B^{\text{Gal}} \) be Hopf-Galois data in \(\text{Ch}^{20}_{\text{Ch}} \).

If \(\Phi_0^* : M_B^{\text{ho}H} \rightarrow M_A \) is a Quillen equivalence, then:

\(\Phi \) homotopic HG-extension \(\iff \Phi \) satisfies effective homotopic Grothendieck descent.

Theorem II: Let \(\Phi : A \xrightarrow{\Phi} B^{\text{H}} \) be Hopf-Galois data in \(M = \text{Ch}^{20}_{\text{Ch}} \).

If \(\Phi_B : B \xrightarrow{\sim} B \), then

\(\Phi_0^* : M_B^{\text{ho}H} \rightarrow M_A \) is a Quillen equivalence

\(\iff \Phi \) is a generalized Koszul dual of \(A \).
Proof of the Theorems:

For any choice of Hopf-Galois data in $\text{Ch}_{k}^{\geq 0}$

$$A \xrightarrow{\varphi} B^{\mathcal{O}}$$

there is a commuting diagram of HG-data

$$\begin{array}{c}
\text{algebra morphism} \\
\downarrow \varphi \\
\text{morphism of } H\text{-comodule algebras}
\end{array}
$$

$$A \xrightarrow{\varphi} B^{\mathcal{O}}$$

The commuting diagram of HG-data above induces a commuting diagram of categories and functors. ($\mathcal{M} = \text{Ch}_{k}^{\geq 0}$)

\[
\begin{array}{c}
\text{Can}_\varphi \downarrow \complement \uparrow \\
\text{equivalence of categories}
\end{array}
\]

\[
\begin{array}{c}
\text{Can}_\varphi \downarrow \complement \uparrow \\
\text{isomorphism of categories}
\end{array}
\]

(\text{**}) Quillen equivalence, since $B \otimes H \xrightarrow{\sim} B' \otimes H$ as B-comings.

(\text{***}) No reason to expect $B \otimes_A B \rightarrow B' \otimes_{A'} B'$ to be a quasi-isomorphism in general.

(\text{****}) If $\mathfrak{k} \cong B$, then $\mathfrak{k} \cong B'$, and these are Quillen equivalences as in (\text{*}).
and it easily. The key to the proof is the particularly nice behavior of the "normal basis extension" $\varphi': A' \hookrightarrow B'$.

Scholium: Given HG-data, $A \xrightarrow{\varphi} B^{\mathfrak{g}^H}$, if $A \subseteq B^c_0 H$, then $B \otimes_A B$ can be viewed as "generalized Koszul dual" of A.