A visual introduction to cyclic sets and cyclotomic spectra

Cary Malkiewich (UIUC)

July 7, 2015
Young Topologists Meeting
Lausanne, Switzerland
Goal: the cyclic bar construction and topological Hochschild homology (THH) in pictures.

Key idea: “cyclotomic” structure.
Goal: the cyclic bar construction and topological Hochschild homology (THH) in pictures.

Key idea: “cyclotomic” structure.

Useful for algebraic K-theory. And fun!
G a monoid, X a right G-space, Y a left G-space.
G a monoid, X a right G-space, Y a left G-space.

$$B(X, G, Y) = \left| [k] \mapsto X \times G^\times k \times Y \right|$$

\[
\begin{array}{c}
X \\
\downarrow d_0 \\
X \times G \\
\downarrow d_1 \\
X \times G \times G \\
\downarrow d_2 \\
X \times G \times G \times G \\
\downarrow d_3 \\
X \times G \times G \times G \times Y
\end{array}
\]
G a monoid, X a right G-space, Y a left G-space.

$$B(X, G, Y) = |[k] \mapsto X \times G^\times k \times Y|$$

$X \times G \times G \times G \times Y$

d_0 d_1 d_2 d_3

Recipe for a space: one Δ^k for each (x, g_1, \ldots, g_k, y).
G a monoid, X a right G-space, Y a left G-space.

\[B(X, G, Y) = \left\{ [k] \mapsto X \times G^\times k \times Y \right\} \]

\[X \times G \times G \times G \times G \times Y \]

\[d_0 \quad d_1 \quad d_2 \quad d_3 \]

Recipe for a space: one \(\Delta^k \) for each \((x, g_1, \ldots, g_k, y) \).

\[EG = B(\ast, G, G), \quad BG = B(\ast, G, \ast) \]
The cyclic bar construction.

The circle action and fixed points.

Elementary examples.

Cyclic spectra and \(THH \).

Review of the bar construction.

Also works for:

- based spaces with smash product
- abelian groups with tensor product
- spectra with the smash product
- diagrams ("\(G \) has many objects")
The cyclic bar construction.

The circle action and fixed points.

Elementary examples.

Cyclic spectra and THH.

The cyclic bar construction.

$$B^\text{cyc} G = [[k] \mapsto G \times G^\times k]$$
The terms $G^{\times k+1}$ form a cyclic space.
The terms $G \times ^{k+1}$ form a *cyclic* space.

\[\Delta^{\text{op}} \subseteq \Lambda^{\text{op}} \longrightarrow \text{Top} \]

- Δ^{op}: totally ordered sets
- Λ^{op}: "cyclically ordered sets"
The terms $G \times k^{+1}$ form a \textit{cyclic} space.

\[
\Delta^{\text{op}} \text{ (totally ordered sets)} \subset \Lambda^{\text{op}} \text{ ("cyclically ordered sets")} \longrightarrow \text{Top}
\]

\[
\text{ob} \Delta = [0], [1], [2], [3], \ldots
\]
The terms $G \times k + 1$ form a *cyclic* space.

\[
\Delta^\text{op} \quad \subset \quad \Lambda^\text{op} \quad \longrightarrow \quad \text{Top}
\]

\[
\text{totally ordered sets} \quad \subset \quad \text{“cyclically ordered sets”}
\]

\[
\text{ob} \Delta = \quad , \quad , \quad , \quad , \quad , \quad \ldots
\]

\[
\text{ob} \Lambda = \quad , \quad , \quad , \quad , \quad , \quad \ldots
\]

The morphisms are “degree 1” functors.
Here’s a morphism $f : [2] \to [8]$ in Λ
Here’s a morphism $f : [2] \to [8]$ in Λ

It sends G^9 to G^3 like this:

$$G \times G^8 \to G \times G^2$$
Here's a morphism $f : [2] \to [8]$ in Λ

It sends G^9 to G^3 like this:

$$G \times G^8 \to G \times G^2$$

$$g_0, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8 \mapsto g_6 g_7 g_8 g_0, g_1 g_2 g_3 g_4 g_5, 1$$
To make *Topological Hochschild homology*, just form B^{cyc} in the category of spectra.
To make *Topological Hochschild homology*, just form B^{cyc} in the category of spectra.

R a ring spectrum.
Theorem

If $X_\bullet : \Lambda^{\text{op}} \to \text{Top}$ is a cyclic space, the realization $|X_\bullet|$ has a natural action by the circle group S^1.
Theorem

If $X_\bullet : \Lambda^{\text{op}} \to \text{Top}$ is a cyclic space, the realization $|X_\bullet|$ has a natural action by the circle group S^1.

Proof: X_\bullet always a colimit of cyclic sets $\Lambda(-, [n])$ for varying n.

The cyclic bar construction.

The circle action and fixed points.

Elementary examples.

Cyclic spectra and THH.

The circle action.

Elementary examples.

Cyclic spectra and THH.

The circle action.
Theorem

If $X_\bullet : \Lambda^{\text{op}} \to \text{Top}$ is a cyclic space, the realization $|X_\bullet|$ has a natural action by the circle group S^1.

Proof: X_\bullet always a colimit of cyclic sets $\Lambda(-, [n])$ for varying n.

Just need the circle action on $\Lambda^n := |\Lambda(-, [n])|$.
Simplices in $\Lambda^n \leftrightarrow$ maps $[k] \rightarrow [n]$.
Simplices in $\Lambda^n \leftrightarrow$ maps $[k] \rightarrow [n]$. Lift to the “universal cover” of $[n]$:

![Diagram showing simplices in Λ^n and their maps to $[n]$.]
Simplices in $\Lambda^n \leftrightarrow$ maps $[k] \rightarrow [n]$.
Lift to the “universal cover” of $[n]:$

\[f : \{0, \ldots, k\} \rightarrow \{(0, 0), (0, 1), \ldots, (0, n), (1, 0), (1, 1), \ldots, (1, n)\}. \]
Simplices in $\Lambda^n \leftrightarrow$ maps $[k] \longrightarrow [n]$.
Lift to the “universal cover” of $[n]$:

\leftrightarrow an increasing function

$f : \{0, \ldots, k\} \longrightarrow \{(0, 0), (0, 1), \ldots, (0, n), (1, 0), (1, 1), \ldots, (1, n)\}$.

Unique, unless $f(k) \leq (0, n)$ or $f(0) \geq (1, 0)$.
Glue the top to the bottom: $\Lambda^0 \cong \Delta^0 \times S^1$
The cyclic bar construction.

The circle action and fixed points.

Elementary examples.

Cyclic spectra and THH.

The circle action.

Glue the top to the bottom: $\Lambda^1 \cong \Delta^1 \times S^1$
The cyclic bar construction.

The circle action and fixed points.

Elementary examples.

Cyclic spectra and THH.

The circle action.

Glue the top to the bottom: $\Lambda^2 \cong \Delta^2 \times S^1$
The cyclic bar construction.

The circle action and fixed points.

Elementary examples.

Cyclic spectra and THH.

The circle action.

Glue the top to the bottom: $\Lambda^3 \cong \Delta^3 \times S^1$
Glue the top to the bottom: $\Lambda^3 \cong \Delta^3 \times S^1$ and so on. □
$C_n \leq S^1$ cyclic subgroup — what are its fixed points?
$C_n \leq S^1$ cyclic subgroup — what are its fixed points?

Simplicial level 0: get one copy of Λ^0 for each $g \in G$
$C_n \leq S^1$ cyclic subgroup — what are its fixed points?

Simplicial level 0: get one copy of Λ^0 for each $g \in G$

Degenerate if $g = 1$, nondegenerate otherwise.
Simplicial level 1: we get a $\Lambda^1 = \Delta^1 \times S^1$ for each pair (g_1, g_2).
Simplicial level 1: we get a $\Lambda^1 = \Delta^1 \times S^1$ for each pair (g_1, g_2).

The bottom triangle for (g_1, g_2) is glued to top triangle for (g_2, g_1) and vice-versa.
Simplicial level 1: we get a $\Lambda^1 = \Delta^1 \times S^1$ for each pair (g_1, g_2).

The bottom triangle for (g_1, g_2) is glued to top triangle for (g_2, g_1) and vice-versa.
Are any blue points fixed by some nontrivial element of S^1?
Answer: only the midpoint, and only if $g_1 = g_2$:
Answer: only the midpoint, and only if $g_1 = g_2$:

The given point must hit itself on the red line again, and only the midpoint does this.
Answer: only the midpoint, and only if $g_1 = g_2$:

The given point must hit itself on the red line again, and only the midpoint does this.
We get a $G \times \Lambda^0$ in the C_2-fixed points.
Simplicial level 2: play the same game. One prism for each triple \((g_1, g_2, g_3)\)
Simplicial level 2: play the same game. One prism for each triple \((g_1, g_2, g_3)\)

\[
\begin{array}{c}
\text{0} \\
\text{1} \\
\text{2}
\end{array}
\]

\[
\begin{array}{c}
\text{0} \\
\text{1} \\
\text{2}
\end{array}
\]

glued by rotating the triple \((g_1, g_2, g_3)\) and rotating the three 3-simplices in the figure.
Simplicial level 2: play the same game. One prism for each triple \((g_1, g_2, g_3)\)

![Diagram](attachment:image.png)

glued by rotating the triple \((g_1, g_2, g_3)\) and rotating the three 3-simplices in the figure.
Simplicial level 2: play the same game. One prism for each triple \((g_1, g_2, g_3)\) and rotating the three 3-simplices in the figure.
Simplicial level 2: play the same game. One prism for each triple (g_1, g_2, g_3)

![Diagram]

glued by rotating the triple (g_1, g_2, g_3) and rotating the three 3-simplices in the figure.
Which points in the blue simplex are fixed?
Which points in the blue simplex are fixed? Triple must be \((g_1, g_1, g_1)\), point must be fixed under rotation of vertices of \(\Delta^2\)
Which points in the blue simplex are fixed? Triple must be \((g_1, g_1, g_1)\), point must be fixed under rotation of vertices of \(\Delta^2\) \(\sim\) only the barycenter.
Which points in the blue simplex are fixed? Triple must be \((g_1, g_1, g_1)\), point must be fixed under rotation of vertices of \(\Delta^2\) \(\leadsto\) only the barycenter.
We get \(C_3\)-fixed points:

Get another \(G \times \Lambda^0\) in the \(C_3\)-fixed points.
Simplicial level 3: look for fixed points in $G^4 \times \Delta^3$.
Simplicial level 3: look for fixed points in $G^4 \times \Delta^3$. First chance to get mapped to yourself, by C_4:
Simplicial level 3: look for fixed points in $G^4 \times \Delta^3$. First chance to get mapped to yourself, by C_4:

We get a $G \times \Lambda^0$ in the C_4-fixed points.
Next chance to get mapped to yourself, by C_2:
Next chance to get mapped to yourself, by \(C_2 \):

\[
\begin{align*}
(0, t_1, t_2, t_3) &\mapsto (t_2, t_3, t_0, t_1) \\
0 &\rightarrow 1 \\
1 &\rightarrow 2 \\
2 &\rightarrow 0 \\
3 &\rightarrow 0
\end{align*}
\]

More fixed points! \(C_2 \) acts on \(\Delta^3 \) by rotating the coordinates twice:

The fixed points form a line \(\Delta^1 \).
So, get a copy of $G^2 \times \Lambda^1$ in the C_2-fixed points.
So, get a copy of $G^2 \times \Lambda^1$ in the C_2-fixed points.

Can easily formalize now: if $r \mid n$, the piece $G^n \times \Lambda^{n-1}$ has C_r-fixed points $G^{n/r} \times \Lambda^{n/r-1}$.
Collect it all together:

<table>
<thead>
<tr>
<th>simp. level</th>
<th>S^1</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${1} \times \Delta^0$</td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$G^2 \times \Lambda^1$</td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$G^3 \times \Lambda^2$</td>
<td></td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$G^4 \times \Lambda^3$</td>
<td>$G^2 \times \Lambda^1$</td>
<td></td>
<td>$G \times \Lambda^0$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$G^5 \times \Lambda^4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$G^6 \times \Lambda^5$</td>
<td>$G^3 \times \Lambda^2$</td>
<td>$G^2 \times \Lambda^1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Notice anything?
Collect it all together:

<table>
<thead>
<tr>
<th>simp. level</th>
<th>S^1</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${1} \times \Delta^0$</td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$G^2 \times \Lambda^1$</td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$G^3 \times \Lambda^2$</td>
<td></td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$G^4 \times \Lambda^3$</td>
<td>$G^2 \times \Lambda^1$</td>
<td></td>
<td>$G \times \Lambda^0$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$G^5 \times \Lambda^4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$G^6 \times \Lambda^5$</td>
<td>$G^3 \times \Lambda^2$</td>
<td>$G^2 \times \Lambda^1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Notice anything?

\[
(B_{cyc}^c G)^{C_n} \cong (B_{cyc}^c G)^{C_1} = B_{cyc}^c G
\]
Collect it all together:

<table>
<thead>
<tr>
<th>simp. level</th>
<th>S^1</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${1} \times \Delta^0$</td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$G^2 \times \Lambda^1$</td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$G^3 \times \Lambda^2$</td>
<td></td>
<td>$G \times \Lambda^0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$G^4 \times \Lambda^3$</td>
<td>$G^2 \times \Lambda^1$</td>
<td></td>
<td>$G \times \Lambda^0$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$G^5 \times \Lambda^4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$G^6 \times \Lambda^5$</td>
<td>$G^3 \times \Lambda^2$</td>
<td>$G^2 \times \Lambda^1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice anything?

\[(B^{\text{cyc}} G)^{C_n} \cong (B^{\text{cyc}} G)^{C_1} = B^{\text{cyc}} G\]

An S^1-space with this property is *cyclotomic*.
X any unbased space, the free loop space is $LX = \text{Map}(S^1, X)$.
X any unbased space, the free loop space is $LX = \text{Map}(S^1, X)$.

C_n-fixed loops must follow the same path n times:

$$(LX)^{C_n} \simeq LX$$
X any unbased space, the free loop space is $LX = \text{Map}(S^1, X)$.

C_n-fixed loops must follow the same path n times:

$$(LX)^{C_n} \cong LX$$

In fact

Proposition

$$B^{\text{cyc}} G \cong L(BG)$$
Switch to based spaces and smash product.
Switch to based spaces and smash product.
X a based space, $S^0 \vee X$ the “square zero extension” of S^0 by X.
Switch to based spaces and smash product. X a based space, $S^0 \vee X$ the “square zero extension” of S^0 by X.

Proposition

$B_{\text{cyc}}^c(S^0 \vee X) \cong S^0 \vee (\Lambda^0/\partial \wedge X) \vee (\Lambda^1/\partial \wedge_{C_2} X \wedge X) \vee (\Lambda^2/\partial \wedge_{C_3} X^3) \vee \ldots$
Switch to based spaces and smash product. X a based space, $S^0 \vee X$ the “square zero extension” of S^0 by X.

Proposition

\[
B_{\text{cyc}}(S^0 \vee X) \cong \\
S^0 \vee (\Lambda^0 / \partial \wedge X) \vee (\Lambda^1 / \partial \wedge C_2 X \wedge X) \vee (\Lambda^2 / \partial \wedge C_3 X \wedge X^3) \vee \ldots
\]

\[
T(X) = S^0 \vee X \vee X^2 \vee X^3 \vee \ldots
\]
Switch to based spaces and smash product.
X a based space, $S^0 \vee X$ the “square zero extension” of S^0 by X.

Proposition

$B^{\text{cyc}}(S^0 \vee X) \cong S^0 \vee (\Lambda^0/\partial \wedge X) \vee (\Lambda^1/\partial \wedge_c X \wedge X) \vee (\Lambda^2/\partial \wedge_c X^0) \vee \ldots$

$T(X) = S^0 \vee X \vee X^2 \vee X^3 \vee \ldots$

Proposition

$B^{\text{cyc}}(T(X)) \cong S^0 \vee (\Lambda^0_+ \wedge X) \vee (\Lambda^1_+ \wedge_c X \wedge X) \vee (\Lambda^2_+ \wedge_c X^3) \vee \ldots$
Switch to based spaces and smash product.
X a based space, $S^0 \lor X$ the “square zero extension” of S^0 by X.

Proposition

$B_{\text{cyc}}(S^0 \lor X) \cong S^0 \lor (\Lambda^0 / \partial \land X) \lor (\Lambda^1 / \partial \land C_2 X \land X) \lor (\Lambda^2 / \partial \land C_3 X^3) \lor \ldots$

$T(X) = S^0 \lor X \lor X^2 \lor X^3 \lor \ldots$

Proposition

$B_{\text{cyc}}(T(X)) \cong S^0 \lor (\Lambda^0_+ \land X) \lor (\Lambda^1_+ \land C_2 X \land X) \lor (\Lambda^2_+ \land C_3 X^3) \lor \ldots$

Very similar!
Switch to based spaces and smash product.
X a based space, $S^0 \vee X$ the “square zero extension” of S^0 by X.

Proposition

$B^{\text{cyc}}(S^0 \vee X) \cong S^0 \vee (\Lambda^0 / \partial \wedge X) \vee (\Lambda^1 / \partial \wedge C_2 X \wedge X) \vee (\Lambda^2 / \partial \wedge C_3 X^3) \vee \ldots$

$T(X) = S^0 \vee X \vee X^2 \vee X^3 \vee \ldots$

Proposition

$B^{\text{cyc}}(T(X)) \cong S^0 \vee (\Lambda_+^0 \wedge X) \vee (\Lambda_+^1 \wedge C_2 X \wedge X) \vee (\Lambda_+^2 \wedge C_3 X^3) \vee \ldots$

Very similar! (Koszul duality)
Apply B^{cyc} to a ring spectrum R, result is $\text{THH}(R)$.
Apply B^{cyc} to a ring spectrum R, result is $THH(R)$. Above arguments apply verbatim, if we use orthogonal spectra and geometric fixed points:

$$\Phi^C_n THH(R) \cong THH(R)$$
Apply B^{cyc} to a ring spectrum R, result is $THH(R)$. Above arguments apply verbatim, if we use orthogonal spectra and geometric fixed points:

$$\Phi^C_n THH(R) \cong THH(R)$$

Earlier model (Bökstedt): extra coherence machinery
Apply B^{cyc} to a ring spectrum R, result is $THH(R)$. Above arguments apply verbatim, if we use orthogonal spectra and geometric fixed points:

$$\Phi^n THH(R) \cong THH(R)$$

Earlier model (Bökstedt): extra coherence machinery
Applications: $THH(DX)$ and its dual, mapping spectra between cyclotomic spectra, bivariant algebraic K-theory.
Takeaway: THH is cool!

The face maps of the cyclic bar construction, superimposed on the objects of Λ.