On the Alexander Polynomial of a welded ribbon tangle

Celeste Damiani

Laboratoire de Mathématiques Nicolas Oresme

Lausanne, Young Topologists’ Meeting 2015

(joint work with Vincent Florens)
Panoramic view

Ribbon tangles in B^4

Alexander functor: functorial generalization of the Alexander polynomial

Welded tangle diagrams in B^2

Alexander polynomial: combinatorial invariant

Classical tangles: 2012, Bigelow, Cattabriga, Florens.

Ribbon tubes: 2015, Audoux, Bellingeri, Meilhan, Wagner.
Panoramic view

Ribbon tubes: 2015, Audoux, Bellingeri, Meilhan, Wagner.

Ribbon tangles in B^4

Welded tangle diagrams in B^2

Alexander functor: functorial generalization of the Alexander polynomial

Alexander polynomial: combinatorial invariant

- \(B^4 = B^3 \times [0, 1] \);
- \(B^4 = B^3 \times [0, 1] \);
- \(k_+ \) circles in the upper copy of \(B^3 \), and \(k_- \) circles in the lower copy of \(B^3 \);

Diagram:

- \(k_+ \) disjoint, unlinked, oriented, trivially embedded circles
- \(k_- \) disjoint, unlinked, oriented, trivially embedded circles
Welded ribbon tangles

- \(B^4 = B^3 \times [0, 1] \);
- \(k_+ \) circles in the upper copy of \(B^3 \), and \(k_- \) circles in the lower copy of \(B^3 \);
- \(A_1, \ldots, A_k \) embedded annuli and \(E_1, \ldots, E_m \) embedded tori \(E_1, \ldots, E_m \) s.t.:

\[
k = \frac{k_+ + k_-}{2}
\]
Welded ribbon tangles

- $B^4 = B^3 \times [0, 1]$;
- k_+ circles in the upper copy of B^3, and k_- circles in the lower copy of B^3;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:
 - ∂A_i is the disjoint sum of two circles;

$$k = \frac{k_+ + k_-}{2}$$
Welded ribbon tangles

- \(B^4 = B^3 \times [0, 1] \);
- \(k_+ \) circles in the upper copy of \(B^3 \), and \(k_- \) circles in the lower copy of \(B^3 \);
- \(A_1, \ldots, A_k \) embedded annuli and \(E_1, \ldots, E_m \) embedded tori \(E_1, \ldots, E_m \) s.t.:
 - \(\partial A_i \) is the disjoint sum of two circles;
 - both annuli and tori admit a filling with 3-balls and solid tori;

\[
k = \frac{k_++k_-}{2}
\]
Welded ribbon tangles

- $B^4 = B^3 \times [0, 1]$;
- k_+ circles in the upper copy of B^3, and k_- circles in the lower copy of B^3;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:
 - ∂A_i is the disjoint sum of two circles;
 - both annuli and tori admit a filling with 3-balls and solid tori;
 - singular points are ribbon singularities.

$$k = \frac{k_+ + k_-}{2}$$
Welded ribbon tangles

- $B^4 = B^3 \times [0, 1]$;
- k_+ circles in the upper copy of B^3, and k_- circles in the lower copy of B^3;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:
 - ∂A_i is the disjoint sum of two circles;
 - both annuli and tori admit a filling with 3-balls and solid tori;
 - singular points are ribbon singularities.

$k = k_+ + k_-$

The set of ribbon tangles

rTA_n: set of ribbon tangles up to ambient isotopy fixing the boundary circles.
Ribbon singularity

Flatly transverse disk whose preimage are two disk:

- one in the interior of a filling,
- the other with interior included in the interior of a filling, and an essential curve as boundary.
Representing welded ribbon tangles
Broken surfaces

Projecting a ribbon tangle’s singularity in $B^3 = B^2 \times I$:

Warning

We lose the information about whether the “flying disk” was moving upward or downward!
Representing welded ribbon tangles
Broken surfaces

Projecting a ribbon tangle’s singularity in $B^3 = B^2 \times I$:

Warning

We loose the information about whether the “flying disk” was moving upward or downward!

Convention

Erase a neighbourhood of the tube corresponding to the lower preimage disk.
From ribbon tangles to broken surfaces

Representing ribbon tangles

Any ribbon tangle can be represented by a broken surface diagram.

1. Ribbon tangles and broken surfaces

2. The Alexander functor

3. Welded diagrams and the Tube map

4. A combinatorial approach to the Alexander functor

5. Calculating the Alexander functor with the Alexander polynomial
The category Rib

Objects: sequences of signs $(\varepsilon_1, \ldots, \varepsilon_k)$;
Morphisms: $(\varepsilon^-, \varepsilon^+)$-ribbon tangle with stacking as composition.
Induced coverings

Construction of the functor

Objects of Rib \rightsquigarrow \(R \)-modules (\(R = \mathbb{Z}[t, t^{-1}] \))

Morphisms of Rib \rightsquigarrow Linear maps of degree \(\delta k \) between exterior algebras of \(R \)-modules.

Alexander functor \(\rho \):

\[
(\varepsilon^+_1, \ldots, \varepsilon^+_k) \rightsquigarrow \Lambda(R \text{-- mod})
\]

\((k_-, k_+)\) -- ribbon tangle

\[
(\varepsilon^-_1, \ldots, \varepsilon^-_k) \rightsquigarrow \Lambda(R \text{-- mod})
\]

\[
\Lambda(R \text{-- linear maps of deg } \delta k)
\]
Induced coverings

$$B^3$$

$$\epsilon_i^\pm \in \{-1, +1\}$$

$$(\epsilon_1^+, \epsilon_2^+, \ldots, \epsilon_k^+)$$

$$(\epsilon_1^-, \ldots, \epsilon_k^-)$$
Induced coverings

\[(\epsilon_1^+, \epsilon_2^+, \ldots, \epsilon_{k_+}^+)\]

\[\chi_+: \pi_1(B^3 \setminus \{C_1, \ldots, C_n\}, \ast) \to \mathbb{Z} = \langle t \rangle\]

\[x_i \mapsto t^{\epsilon_i^+}\]

One variable or many variables?

It is possible to take \(\mathbb{Z}^{k_+} = \langle t_1, \ldots, t_{k_+} \rangle\) in order to obtain a multivariable invariant (one variable for each component).
Induced coverings

\[(\varepsilon_1^+, \varepsilon_2^+, \ldots, \varepsilon_{k_+}^+)\]

\[\chi_+: \pi_1(B^3 \setminus \{C_1, \ldots, C_n\}, \ast) \rightarrow \mathbb{Z} = \langle t \rangle\]

\[x_i \mapsto t^{\varepsilon_i^+}\]

This epimorphisms defines a covering \((B^3 \setminus \{C_1, \ldots, C_n\})_{\chi}^+\).

The module \(H_+\)

We define \(H_+\) to be \(H_1((B^3 \setminus \{C_1, \ldots, C_n\})_{\chi}^+, \ast; \mathbb{Z}[t, t^{-1}])\).
The R-modules H_- and H_+

\[
(\varepsilon_1^+, \varepsilon_2^+, \ldots, \varepsilon_{k_+}^+) \rightarrow \Lambda H_+ \\
(\varepsilon_1^-, \ldots, \varepsilon_{k_-}^-) \rightarrow \Lambda H_-
\]

B^3 linear application of degree $\delta k = \frac{k_+ - k_-}{2}$
Let T be a ribbon tangle with n components, we denote:

- the exterior $X_T = B^4 \setminus \text{Tub } (T)$;
- m_{\pm} the inclusion maps of the upper and lower copies of B^3 in X_T;
- the homology group $H_1(X_T) \simeq \mathbb{Z}^n$ is generated by the meridians of the annuli and tori;
- χ be the extension of the epimorphisms χ_+ and χ_-;
- \hat{X}_T the maximal abelian cover defined.
Let T be a ribbon tangle with n components, we denote:

- the exterior $X_T = B^4 \setminus \text{Tub}(T)$;
- m_{\pm} the inclusion maps of the upper and lower copies of B^3 in X_T;
- the homology group $H_1(X_T) \cong \mathbb{Z}^n$ is generated by the meridians of the annuli and tori;
- χ be the extension of the epimorphisms χ_+ and χ_-;
- \hat{X}_T the maximal abelian cover defined.

The module H

We define H to be $H_1(\hat{X}_T, *; \mathbb{Z}[t, t^{-1}])$, where $*$ is a basepoint on $\partial_* B^4$.
The Alexander function

$R = \mathbb{Z}[t, t^{-1}]$; M a R-module of finite type with a deficiency k

presentation:

$\langle \gamma_1, \ldots, \gamma_{p+k} \mid r_1, \ldots, r_p \rangle$.

Γ = free R-module engendred by $\langle \gamma_1, \ldots, \gamma_{p+k} \rangle$.

$\hat{r} = r_1 \wedge \cdots \wedge r_p$ and $\hat{\gamma} = \gamma_1 \wedge \cdots \wedge \gamma_{p+k}$.

The Alexander function

$\varphi_{(M,k)} : \wedge^k M \to R$ is the R-linear application defined by:

$u \wedge \hat{r} = \varphi(u) \cdot \hat{\gamma}$

for each $u = u_1 \wedge \cdots \wedge u_k \in \wedge^k M$.

For k fixes, different deficiency k presentations give the Alexander functions

which differ by a multiplicative unitary element of R.
The Alexander functor ρ

$\varphi_{(H,k)} : \wedge^k H \to R$ Alexander function, $i_\pm : H_\pm \to H$, $k = \frac{k_+ + k_-}{2}$, $\delta k = \frac{k_+ - k_-}{2}$.

Alexander invariant

$\rho_\tau : \wedge (\rho_{i,\tau}) : \wedge H_- \to \wedge H_+$ is defined as follows: for $u_- \in \wedge^i H_-$, $\rho_{i,\tau}(u_-)$ is the element of $\wedge^{i+\delta k} H_+$ that, for each $w_+ \in \wedge^{k-i} H_+$, satisfies:

$$\varphi(H,k)(i_-(u_-) \wedge i_+(w_+)) = \det_+(\rho_{i,\tau}(u_-) \wedge w_+).$$

where $\det_+ : \wedge^{k_+} H_+ \to R$ is a volume form on H_+.

\rightarrow Classical case: Bigelow, Cattabriga et Florens (2012).

Functoriality

ρ is a functor from the category of 3-dim cobordisms with a representation of their fundamental group to the category of \mathbb{Z}-graded R-modules.

\rightarrow Classical case: Florens et Massuyeau (2014).
Contents

1. Ribbon tangles and broken surfaces

2. The Alexander functor

3. Welded diagrams and the Tube map

4. A combinatorial approach to the Alexander functor

5. Calculating the Alexander functor with the Alexander polynomial
Welded diagrams

Welded k-tangle diagram T

Immersion of k oriented arcs and a certain number of circles in B^2 such that:

- $\partial I \subset \partial B_2$,
- double points: finite number, transverse, decorated as positive, negative or virtual, modulo generalized Reidemeister moves.
The tube application

For every diagram, one can associate a broken surface, and hence a ribbon tangle by “blowing up” strings as follows:

The tube map

This assignment defines a map $\text{Tube} : \text{diagrams} \to rTA_n$.
The tube application

For every diagram, one can associate a broken surface, and hence a ribbon tangle by “blowing up” strings as follows:

The tube map

This assignment defines a map $\text{Tube} : \text{diagrams} \rightarrow r\text{TA}_n$.

Proposition (Yanagawa, Satoh - Audoux, Bellingeri, Meilhan, Wagner)

The map Tube is surjective.
1. Ribbon tangles and broken surfaces
2. The Alexander functor
3. Welded diagrams and the Tube map
4. A combinatorial approach to the Alexander functor
5. Calculating the Alexander functor with the Alexander polynomial
The Alexander “polynomial” for welded tangle diagrams

Welded tangle diagrams

Circuit algebra structure
The Alexander “polynomial” for welded tangle diagrams

Welded tangle diagrams \rightarrow Circuit algebra structure \rightarrow Another circuit algebra?
A pair of modules defined on welded tangle diagrams

The modules H_{in} and H_{out}

$X^{in} = \{a, b, c\}$ \quad \rightarrow \quad $H_{in} = \mathbb{Z}[t^{\pm 1}]$-module over X^{in}

$X^{out} = \{d, e, f\}$ \quad \rightarrow \quad $H_{out} = \mathbb{Z}[t^{\pm 1}]$-module over X^{out}

Alexander Half Densities

An *Alexander Half Density* of X^{in} and X^{out}, is an element of

$$\mathcal{D}(X^{in}, X^{out}) = \wedge^n (H_{in} \oplus H_{out}).$$
A pair of modules defined on welded tangle diagrams
The modules H_{in} and H_{out}

\[X^{in} = \{a, b, c\} \quad \rightarrow \quad H_{in} = \mathbb{Z}[t^{\pm 1}]-\text{module over } X^{in} \]
\[X^{out} = \{d, e, f\} \quad \rightarrow \quad H_{out} = \mathbb{Z}[t^{\pm 1}]-\text{module over } X^{out} \]

Alexander Half Densities

An *Alexander Half Density* of X^{in} and X^{out}, is an element of

\[\mathcal{D}(X^{in}, X^{out}) = \wedge^n (H_{in} \oplus H_{out}). \]

The circuit algebra of Alexander Half Densities

Alexander Half Densities with composition (multilinear applications among AHD) form a circuit algebra.
The Alexander matrix

A welded tangle diagram, we can associate a matrix of the form:

\[A(T) = \begin{pmatrix} \text{Internal arcs} & \mathcal{X}^{\text{in}} & \mathcal{X}^{\text{out}} \\ \mathcal{X}^{\text{out}} & \end{pmatrix} \]
The Alexander polynomial of a welded tangle diagram

We define:

$$\mathcal{A}(T) = \sum_{i_1 < \cdots < i_k} (A(T)^{i_1, \ldots, i_k}) x_{i_1} \wedge \cdots \wedge x_{i_k} \in \wedge^k(H_{in} \oplus H_{out})$$

where $A(T)^{i_1 < \cdots < i_k}$ is the minor of A, with respect to the columns corresponding to internal arcs and arcs i_1, \ldots, i_k.
An invariant morphism of circuit algebras

- \mathcal{A} is a morphism between the circuit algebras \mathcal{T} of welded tangle diagrams and \mathcal{D} of Alexander Half Densities;
- \mathcal{A} is an invariant for welded tangle diagrams defined modulo a unit of $\mathbb{Z}[t, t^{-1}]$.

→ Virtual case: Jana Archibald (2010).
Ribbon tangles and broken surfaces

The Alexander functor

Welded diagrams and the Tube map

A combinatorial approach to the Alexander functor

Calculating the Alexander functor with the Alexander polynomial
Proposition

The matrix $A(T)$ is a presentation matrix for H with deficiency k.

<table>
<thead>
<tr>
<th>Internal arcs</th>
<th>X^{in}</th>
<th>X^{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal arcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X^{out}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For a braid T: $k = k_- = k_+$, and $\delta k = \frac{k_+ - k_-}{2} = 0$.

- **Bigelow, Cattabriga, Florens**: $\rho_i : \wedge^i H_- \to \wedge^i H_+$ is the i-th external power of the Burau representation, modulo a multiplicative unit of R, that depends on the chosen presentation for H.

- Chosing $A(T)$ as presentation matrix, we get

$$\rho = \bigoplus_i \rho_i = - \bigoplus_i \wedge \rho_{\text{Burau}}.$$
Theorem (2015 - D., Florens)

Let \(\tau \) be an \((\varepsilon^-, \varepsilon^+)\)-ribbon tangles avec \(k_- \) et \(k_+ \) circles, \(T(\tau) \) welded tangle diagram obtained by projection. There’s a fonctorial isomorphism

\[
\alpha : \wedge^k(H_{in} \oplus H_{out}) \to \text{Hom}_{\delta_k}(\wedge H_-, \wedge H_+)
\]

that sends \(\mathcal{A}(T(\tau)) \) to \(\rho(\tau) \).
Decomposition

Partition of the points of a welded tangle diagrams that the Tube map will send to circles “at the top” and “at the bottom”.

Theorem (2015 - D., Florens)

Let \(T \) be a welded tangle diagram, and \(\mu \) a decomposition. There’s an isomorphism

\[
\beta : \text{Hom}_{\delta_k}(\wedge H_-, \wedge H_+) \rightarrow \wedge^k (H_- \oplus H_+) \cong \wedge^k (H_{in} \oplus H_{out})
\]

that send \(\rho(\tau_\mu(T)) \) to \(A(T) \). In particular, \(\beta(\rho(\tau_\mu(T))) \) does not depend on the choice of \(\mu \).
Thank you for your attention.