A connection between cellularization for groups and spaces via two-complexes

José L. Rodrígueza, Jérôme Schererb,*

a Área de Geometría y Topología, Universidad de Almería, E-04120 Almería, Spain
b Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

Received 21 February 2007; received in revised form 3 October 2007
Available online 2 January 2008
Communicated by F. Morel

Abstract

Let M denote a two-dimensional Moore space (so $H_2(M; \mathbb{Z}) = 0$), with fundamental group G. The M-cellular spaces are those one can build from M by using wedges, push-outs, and telescopes (and hence all pointed homotopy colimits). The issue we address here is the characterization of the class of M-cellular spaces by means of algebraic properties derived from the group G. We show that the cellular type of the fundamental group and homological information does not suffice, and one is forced to study a certain universal extension.

c © 2007 Elsevier B.V. All rights reserved.

MSC: Primary: 55P60; secondary: 20K45; 55P20

0. Introduction

Every pointed space X can be approximated by an M-cellular complex $CW_M X$ by means of a map $CW_M X \to X$ which induces a weak homotopy equivalence on pointed mapping spaces

$$\text{map}_\ast(M, CW_M X) \to \text{map}_\ast(M, X).$$

This result generalizes the well-known CW-approximation theorem of J.H.C. Whitehead (in such a case, $M = S^1$). Bousfield was the first to construct such a functor in the homotopy category, [2, Corollary 7.5]. Dror Farjoun [7] treated extensively CW_M as a functor in the category of pointed spaces and studied its general properties in the context of homotopical localization, see also [1,6]. In this paper we focus on the case when M is a two-dimensional Moore space, i.e. a two-complex with $H_2(M; \mathbb{Z}) = 0$. We study the relationship between the class of M-cellular spaces (those for which $X \simeq CW_M X$) and the group theoretical properties of $G = \pi_1 M$.

Let us denote by J the set of primes p for which G_{ab} is uniquely p-divisible. Define $R = \mathbb{Z}_{(J)}$, the integers localized at J, if G_{ab} is torsion, and $R = \bigoplus_{p \in J} \mathbb{Z}/p$ otherwise. Since M itself is HR-acyclic, so is any M-cellular...
Let $G = \pi_1 X$ be a two-dimensional Moore space, whose fundamental group G is either finite or a subgroup of Q. Then a simply connected space X is M-cellular if and only if X is HR-acyclic.

In general the class of cellular spaces does not have such a limpid characterization. There is an extra condition on the second homology group, related to the property of being “quasi-G-radical”, see Theorem 1.5. However, the characterization often holds for simply connected spaces.

Theorems 2.6 and 2.11. Let M be a two-dimensional Moore space whose fundamental group G is either finite abelian or a subring of Q. Then a space X is M-cellular if and only if $\pi_1 X$ is G-cellular and X is HR-acyclic.

Let us finally explain why the answer to the question is no in general. Let $G = Z[1/p] \ast Z/p$ and $M = M(Z/1/p), 1) \vee M(Z/p, 1). Then G_{ab} = Z[1/p] \oplus Z/p and the set of primes J by which G_{ab} is uniquely divisible is the empty set. Therefore the associated ring $R = \oplus_{q \in J} Z/q$ is 0, so the condition $H_e(X; R) = 0$ is always satisfied. However if the naive characterization given above was true, all simply connected spaces would be M-cellular. But this is false:

Theorem 3.2. Let $G = Z[1/p] \ast Z/p$, and M be the Moore space $M(Z[1/p], 1) \vee M(Z/p, 1)$, so the associated ring R is 0. The space $K(Z, 2)$ is then HR-acyclic, its fundamental group is $Z[1/p] \ast Z/p$-cellular, but $K(Z, 2)$ is not M-cellular.

Even though this result provides a negative answer to the question we asked above, quite a few problems remain open. We ask in particular whether the naive characterization holds for Moore spaces with abelian fundamental groups. This brings us to a question which can be considered as purely group theoretical, see Question 2.2. If $M(G, 1)$ is a two-dimensional Moore space with abelian fundamental group G, is G a quotient of a subgroup of Q?

1. A general study of $M(G, 1)$-cellular spaces

In this section M is a two-dimensional Moore space $M(G, 1)$, where $G \cong \pi_1 M(G, 1)$. The objective is to obtain a characterization of $M(G, 1)$-cellular spaces.

1.1. Chachólski’s approach to cellularization

The fundamental theorem on which our work on cellularization relies is that of Chachólski stating that $CW_M X$ can be obtained as a certain homotopy fiber. Recall that P_M denotes the M-nullification functor, see [7]. In particular connected spaces X such that $P_M X \simeq X$ are called M-null and are characterized by the fact that map$_* (M, X) \simeq \ast$.

Theorem 1.1 ([6, Theorem 20.3]). Let $X \to X'$ be a map which induces the trivial map $[M, X] \to [M, X']$ and assume that its homotopy fiber is M-cellular. Then $CW_M X$ is the homotopy fiber of the composite map $X \to X' \to P_{\Sigma M} X'$. □
As explained in [6, Theorem 20.5], one way to construct a map \(X \to X' \) having the desired properties is the following: Take a wedge of as many copies of \(M \) as there are homotopy classes of maps \(M \to X \) and consider the fibration sequence

\[
\bigvee_{[M, X]} M \xrightarrow{\varepsilon} X \to X' = P^1_M X, \tag{1}
\]

where the map \(\varepsilon \) is the evaluation map. The homotopy fiber of \(X \to P^1_M X \) is then \(M \)-cellular and \(CW_M X \) is obtained as the homotopy fiber of a mixing process between the \(M \)-nullification and the \(\Sigma M \)-nullification. Indeed \(P^1_M X \) can be seen as the first step of the construction of \(P_M X \) and \(CW_M X \simeq \text{Fib}(X \to P^1_M X \to P_{\Sigma M} P^1_M X) \). In particular, a space \(X \) is \(M \)-cellular if and only if the space \(P^1_M X \) is \(\Sigma M \)-acyclic, i.e. \(P_{\Sigma M}^1 P^1_M X \simeq \ast \). We show next that one can sometimes make do with less.

Corollary 1.2. Let \(M \) be any space and assume there exists a subset \(I \) of \([M, X] \) such that the homotopy cofiber \(C_\varepsilon \) of the evaluation map \(\varepsilon : \bigvee_I M \to X \) is already \(\Sigma M \)-acyclic. Then \(X \) is \(M \)-cellular.

Proof. We have to show that \(P^1_M X \) is also \(\Sigma M \)-acyclic. For this purpose we use the cofibration sequence \(\bigvee_{[M, X]} M \hookrightarrow \bigvee_{[M, X]} M \to \bigvee_{j' \subseteq J} M \), where \(j' \) is the complement of \(I \) in \([M, X] \). This induces a cofibration sequence \(C_\varepsilon \to P^1_M X \to \bigvee_{j' \subseteq J} \Sigma M \). But since \(C_\varepsilon \) is \(\Sigma M \)-acyclic, it is easy to check that so is \(P^1_M X \). \(\square \)

1.2. The characterization of \(M(G, 1) \)-cellular spaces

From now on \(M \) is a two-dimensional Moore space \(M(G, 1) \). The homology exact sequence associated to the cofibration (1) then has the following simple form:

\[
0 \to H_2 X \to E \to \bigoplus_{[M, X]} G_{ab} \to H_1 X \to 0. \tag{2}
\]

Notation 1.3. Let \(G \) be a group. As for example in [3, Section 7], \(J \) denotes the set of primes \(p \) for which \(G_{ab} \) is uniquely \(p \)-divisible, and \(J' \) its complementary set of primes. If \(G_{ab} \) is torsion, then we set \(H = \bigoplus_{p \in J'} \mathbb{Z}/p \) and \(R = \mathbb{Z}_{(J)} \). In the other case, i.e., if \(G_{ab} \) contains some torsion free element, \(H = \mathbb{Z}[J^{-1}] \) and \(R = \bigoplus_{p \in J} \mathbb{Z}/p \).

Lemma 1.4. The map \([M, X] \to \text{Hom}(G, \pi_1 X) \) is an epimorphism for any \(X \). \(\square \)

Recall that the \(G \)-radical \(T_G N \) of a group \(N \) is the smallest subgroup of \(N \) such that \(\text{Hom}(G, N/ T_G N) = 0 \). [2]. When \(N = T_G N \), one says that \(N \) is \(G \)-radical.

Theorem 1.5. A space \(X \) is \(M \)-cellular if and only if the following three conditions are satisfied:

1. the fundamental group \(\pi_1 X \) is \(G \)-cellular;
2. the space \(X \) is \(HR \)-acyclic;
3. the abelian group \(E \) in (2) is \(G_{ab} \)-radical.

Proof. According to Proposition 5.3 in [13] the space \(P_{\Sigma M} P^1_M X \) is contractible if and only if \(P^1_M X \) is 1-connected, \(\pi_2(P^1_M X) \) is \(G_{ab} \)-radical and \(H_2(P^1_M X; R) = 0 \). Since \(M \) is \(HR \)-acyclic, the cofibration (1) tells us that \(X \) is \(HR \)-acyclic if and only if \(P^1_M X \) is \(HR \)-acyclic. The associated homology exact sequence in low dimensions is (2), where \(E = H_2(P^1_M X) \simeq \pi_2(P^1_M X) \) and \(P^1_M X \) is 1-connected by the above lemma. The conclusion of the theorem is then clear. \(\square \)

Corollary 1.6. A 1-connected space \(X \) is \(M \)-cellular if and only if \(X \) is \(HR \)-acyclic and the abelian group \(E \) in (2) is \(G_{ab} \)-radical. \(\square \)
1.3. Quasi-radical groups

Let us remark here that in the situation of Corollary 1.6, \(E \cong \text{colim}_\alpha (H_2 X \hookrightarrow E_\alpha) \) where \(\alpha \) runs over all extensions of \(G_{ab} \) by \(H_2 X \). This is a “universal” extension in the sense that any extension \(H_2 X \hookrightarrow E_\alpha \to G_{ab} \) can be obtained as the pull-back of it along the inclusion \(i_\alpha : G_{ab} \to \bigoplus G_{ab} \).

Definition 1.7. Let \(G \) be any group, and let \(H \) be the group associated to \(G_{ab} \) as in Notation 1.3. An \(H \)-radical abelian group \(A \) is called quasi-\(G \)-radical if the universal extension

\[
0 \to A \to E \to \bigoplus \text{Ext}(G_{ab}, A) \to 0
\]

is \(G_{ab} \)-radical.

Remark 1.8. There is a strict inclusion \(\{ G_{ab} \text{-radical groups} \} \subseteq \{ \text{quasi-}G \text{-radical groups} \} \). For \(G = \mathbb{Z}_p^\infty \) for example, the group \(H \) is \(\mathbb{Z}/p \). It is itself quasi-\(G \)-radical, but not \(G \)-radical.

Our terminology is the analogue of Mislin’s and Peschke’s notion of \(h2 \)-perfect groups given in [12, Section 2]. In fact the two settings intersect in the most simplest cases: When \(G = \mathbb{Z}/p \), an abelian group is quasi-\(\mathbb{Z}/p \)-radical if and only if it is \(H \mathbb{Z}/[1/p] \) 2-perfect (compare [12, Example 5.1] with Theorem 2.11) and likewise, when \(G = \mathbb{Z}_p[1/p] \), choose \(H \mathbb{Z}/p \), ordinary homology with coefficients in \(\mathbb{Z}/p \) (compare [12, Example 5.2] with Proposition 2.8).

Proposition 1.9. Let \(A \) be an abelian group such that \(K(A, 2) \) is \(M \)-acyclic. Then \(K(A, 2) \) is \(M \)-cellular if and only if \(A \) is quasi-\(G \)-radical. \(\square \)

The study of the cellularization of Eilenberg–Mac Lane spaces will be refined in Section 3.

Since the integral homology groups of an \(H \mathbb{R} \)-acyclic space are \(H \)-radical (by the universal coefficients theorem), we obtain the following reformulation of Corollary 1.6:

Corollary 1.10. A simply connected space \(X \) is \(M \)-cellular if and only if

1. the group \(\pi_2 X \) is quasi-\(G \)-radical, and
2. \(\pi_k X \) is \(J' \)-torsion for all \(k \), if \(G_{ab} \) is torsion, or uniquely \(J \)-divisible otherwise. \(\square \)

1.4. Consequences for the naive characterization

It is difficult to know whether a group is quasi-radical at a first glance. Therefore it is useful to have partial answers to our question where some extra assumption on \(X \) forces \(\pi_2 X \) to be quasi-radical. All the cases where the naive characterization holds are obtained by comparing \(H \)-radical groups with quasi-\(G \)-radical ones.

Theorem 1.11. Let \(X \) be a space such that \(H_2 X \) is \(G_{ab} \)-radical. Then \(X \) is \(M \)-cellular if and only if \(\pi_1 X \) is \(G \)-cellular and \(X \) is \(H \mathbb{R} \)-acyclic.

Proof. Suppose that \(X \) is \(H \mathbb{R} \)-acyclic, the fundamental group \(N \) is \(G \)-cellular, and \(H_2 X \) is \(G_{ab} \)-radical. Let us consider a little variation in the construction of \(CW_M X \) (which in general does not produce \(CW_M X \) in the sense of Theorem 1.1). Instead of \(P^1_M X \), we take \(C_\varepsilon \) the homotopy cofiber of the evaluation map \(\bigvee_i M \to X \) where \(I \) is the union of the maps in \([M, X] \) represented by non-trivial elements in \(\text{Ext}(G_{ab}, \pi_2 X) \) and one preimage under \([M, X] \to \text{Hom}(G, N) \) for each morphism \(G \to N \). By Corollary 1.2, \(X \) is \(M \)-cellular if we show that \(C_\varepsilon \) is \(\Sigma M \)-acyclic. The map \(X \to K(N, 1) \) classifying the universal cover of \(X \) yields a diagram whose rows are cofibrations

\[
\begin{array}{ccc}
\bigvee_i M & \to & X \\
\downarrow & & \downarrow \\
\text{Hom}(G, N) & M & \to K(N, 1) \to K(N, 1)'.
\end{array}
\]
Thus we get a commutative diagram in homology where the rows are exact

\[
\begin{array}{cccccc}
0 & \to & H_2 X & \to & H_2 (C_\varepsilon) & \to \bigoplus I G_{ab} & \xrightarrow{h''} & H_1 N & \to 0 \\
\downarrow & & \downarrow & & \downarrow & & || & & \\
0 & \to & H_2 N & \to & H_2 (K(N, 1)) & \xrightarrow{g} \bigoplus \Hom(G, N) G_{ab} & \xrightarrow{h'} & H_1 N & \to 0.
\end{array}
\]

The kernel of \(h''\) is the direct sum of \(\bigoplus \Ext(G_{ab}, \pi_2 X) G_{ab}\) and the kernel of \(h'\). Now, since \(N\) is \(G\)-cellular by assumption, the group \(H_2 (K(N, 1))\) is \(G_{ab}\)-radical by [13, Corollary 3.8], and thus \(\text{Im} \, g = \text{Ker} \, h'\) is also \(G_{ab}\)-radical. Hence, \(H_2 (C_\varepsilon)\) is \(G_{ab}\)-radical and this proves that \(C_\varepsilon\) is \(\Sigma M\)-acyclic. \(\square\)

The condition of \(H_2 X\) being \(G_{ab}\)-radical is not necessary. For instance, we will see in Theorem 2.12 that \(X = M(Z/p, 2)\) is \(M(Z(p^\infty), 1)\)-cellular, while \(Z/p\) is not \(Z(p^\infty)\)-radical. It is of course quasi-\(Z(p^\infty)\)-radical, compared with Remark 1.8.

Corollary 1.12. Let \(X\) be a space such that \(\pi_2 X\) is \(G_{ab}\)-radical. If \(\pi_1 X\) is \(G\)-cellular and \(X\) is \(HR\)-acyclic, then \(X\) is \(M\)-cellular.

Proof. In the Hopf exact sequence \(\pi_2 X \to H_2 X \to H_2 N\), both \(\pi_2 X\) and \(H_2 N\) (by [13, Corollary 2.8]) are \(G_{ab}\)-radical. Thus so is \(H_2 X\) and we conclude by Theorem 1.11. \(\square\)

In fact a slight variation in the proof of Theorem 1.11 yields the following generalization of the preceding corollary.

Proposition 1.13. Let \(X\) be a space such that \(\pi_2 X\) is \(G\)-radical. Then \(X\) is \(M\)-cellular if and only if \(\pi_1 X\) is \(G\)-cellular and \(X\) is \(HR\)-acyclic. \(\square\)

2. Moore spaces with abelian fundamental group

In this section we focus on two-dimensional Moore spaces \(M(G, 1)\) with abelian fundamental group \(G\). This study will be used in the last section to give counter-examples to the naive characterization of \(M(G, 1)\)-cellular spaces. Let us give concrete models for all known two-dimensional Moore spaces with abelian fundamental groups.

2.1. Varadarajan’s list

We start with the following list of all abelian groups \(G\) with \(H_2 (G; Z) = 0\). These are exactly the groups for which a Moore space \(M(G, 1)\) exists. It might however be a three-complex.

Theorem 2.1 ([14, Theorem 2.6]). Let \(G\) be an abelian group with torsion subgroup \(T\). For any prime \(p\), let \(T(p)\) denote the \(p\)-primary component of \(T\). Then there exists a Moore space \(M(G, 1)\) if and only if

(1) the quotient \(G/T\) is of rank at most 1 over \(Q\).
(2) for all \(p\), the group \(T(p)\) is either divisible or the direct sum of a divisible group and a cyclic group,
(3) for all \(p\), we have \(T(p) \otimes G/T = 0\). \(\square\)

2.2. The torsion free case

Let \(S\) be any subgroup of \(Q\), the ring of rationals. We can assume that 1 is in \(S\). These groups have been classified by Baer and are determined by their types (see for example [11, Theorem 85.1]). The type of \(S\) is the sequence \((k_2, k_3, k_5, k_7, k_{11}, \ldots, k_p, \ldots)\) where \(p\) runs over the set \(P\) of all primes and \(k_p\) is either a natural integer or infinite. The number \(k_p\) indicates that 1 is divisible in \(S\) by \(p^{k_p}\), but not by \(p^{k_p+1}\), unless \(k_p\) is infinite. For example the group of type \((0, 0, 0, \ldots, 0, \infty, 0, 0, \ldots)\) is \(Z[1/p]\).

We now exhibit a particular construction of a Moore space \(M(S, 1)\), where \(S\) is a subgroup of \(Q\) of type \((k_p)_{p \in P}\). Let us first order all primes and their powers up to \(p^{k_p}\) by increasing order and denote this sequence by \((m_1, m_2, m_3, \ldots)\). Then we define \(\alpha_n\) to be the unique prime \(p\) dividing \(m_n\). In this way, the sequence \((\alpha_1, \alpha_2, \alpha_3, \ldots)\) contains exactly \(k_p\) times the prime \(p\). Obviously the colimit of

\[
Z \xrightarrow{a_1} Z \xrightarrow{a_2} Z \xrightarrow{a_3} Z \xrightarrow{a_4} \ldots
\]
We have to prove that
\[M \] is a two-dimensional Moore space with fundamental group a subgroup \(S \) of
For such an integer \(k \)
\[\text{and then define by induction on } k \text{ a sequence } \gamma_k \text{, by } \gamma_0 = 1 \text{ and } \gamma_k = \gamma_{k-1} \cdot \beta_k \text{. We have then a commutative diagram} \]
\[
\begin{array}{ccccccc}
Z & \xrightarrow{\alpha_1} & Z & \xrightarrow{\alpha_2} & Z & \xrightarrow{\alpha_3} & \cdots \\
\downarrow{\gamma_0} & & \downarrow{\gamma_1} & & \downarrow{\gamma_2} & & \\
Z & \xrightarrow{\beta_1} & Z & \xrightarrow{\beta_2} & Z & \xrightarrow{\beta_3} & \cdots
\end{array}
\]
Replacing every copy of the integers by a copy of a circle S^1, we get the map $S^2[J^{-1}] \to M$ as a map between telescopes. Its homotopy cofiber is thus the homotopy colimit of the homotopy cofibers of $\gamma_k : S^1 \to S^1$. These are Moore spaces of type $M(Z/\gamma_k, 1)$. Notice that no prime $p \in J$ divides any γ_k, i.e. γ_k satisfies the conditions of Lemma 2.3. Hence $M(Z/\gamma_k, 1)$ is M-cellular and their telescope as well: $M(\oplus_{p \notin J} Z/p^{k_p}, 1)$ is M-cellular. The Puppe sequence tells us finally that we have a cofibration

$$M \to M(\oplus_{p \notin J} Z/p^{k_p}, 1) \to S^2[J^{-1}]$$

where the first two spaces are M-cellular. Thus so is the third and we are done. □

Example 2.5. Let S be the subgroup of Q of type $(1, 1, 1, 1, \ldots)$, that is, S is the additive subgroup of Q generated by $1/p$ for all prime numbers p. The above theorem shows in this case that S^2 is $M(S, 1)$-cellular. There is an isomorphism $\text{Ext}(S, Z) \cong (\prod_p Z/p)/Z$ and there are two possibilities for an extension $Z \to E \to S$. Either the S-reduction of E (the quotient by its S-radical) is E, or it is Z, depending on whether the element $\alpha \in (\prod_p Z/p)/Z$ representing the extension is torsion or not. Thus none of these extensions are S-radical. However, if we take $F = \text{colim}_{E \in \text{Ext}(S, Z)}(Z \to E)$, then F is S-radical (i.e. Z is S-quasi-radical).

2.5. *The case of subrings of Q*

We have here a stronger result than Theorem 2.4 and we can in fact completely determine the class of M-cellular spaces.

Theorem 2.6. Let $M = M(Z[J^{-1}], 1)$ be a two-dimensional Moore space. Then a space X is M-cellular if and only if $\pi_1 X$ is $Z[J^{-1}]$-cellular and X is HR-acyclic.

Proof. This result is a reflection of the fact that the group H associated to $Z[J^{-1}]$ as introduced in Notation 1.3 is $Z[J^{-1}]$ itself. This means we can directly apply Theorem 1.11 because $H_2(X; Z)$ is H-radical. □

Lemma 2.7. Let $G = Z[J^{-1}]$ and $M = M(G, 1)$ be a two-dimensional Moore space. Then the class of nilpotent M-cellular spaces coincides with that of nilpotent M-acyclic spaces.

Proof. An M-cellular space is always M-acyclic, Theorem 1.1. Thus let X be an M-acyclic space. We apply Chachólski’s theorem to prove that it is also M-cellular. The cofiber $P^1_M X$ of the evaluation $\vee M \to X$ is a simply connected space because there is no difference between G-socular and G-radical nilpotent groups (there is none for abelian groups and use [3, Proposition 7.4]). It is also M-acyclic and hence $H_2(P^1_M X; Z)$ has to be uniquely J-divisible for all $n \geq 2$, i.e. G-radical. Therefore $P^1_M X \simeq \ast$ and we are done. □

Proposition 2.8. Let $G = Z[J^{-1}]$ and $M = M(G, 1)$ be a two-dimensional Moore space. Then, for any nilpotent space X with G-radical fundamental group, we have $CW_X \simeq \text{Fib}(X \to \prod J X_p^\wedge)$.

Proof. This is a direct consequence of the preceding lemma and [5, Theorem 4.4], which identifies $P_M X$ with $\prod J X_p^\wedge$ when X is a nilpotent space with G-radical fundamental group. □

Example 2.9. Let $G = Q$. Then CW_MS^2 is a two-stage Postnikov space, with

$$\pi_1 CW_MS^2 \simeq \pi_2 CW_MS^2 \cong \left(\prod_p Z_p^\wedge\right)/Z \cong \oplus Q.$$

This gives in particular an example where the fundamental group of the M-cellularization drastically differs from the G-cellularization of the fundamental group.

Example 2.10. Let $G = Z[1/p]$. Then $CW_M K(Z(p^\infty), 1) \simeq K(Q^\wedge_p, 1)$ and the associated universal central extension (as in [13, Theorem 2.7]) is the extension $Z_p^\wedge \to Q_p^\wedge \to Z(p^\infty)$.
2.6. Cellularity in the reduced torsion case

The naive description of the class of $M(G, 1)$-cellular spaces given in the introduction is an actual characterization when G is any finite cyclic group. More generally we have:

Theorem 2.11. Let $G = \bigoplus \mathbb{Z}/p^k$ be an abelian torsion group with no divisible summand and $M = M(G, 1)$ be a two-dimensional Moore space. Then a space X is M-cellular if and only if $\pi_1 X$ is generated by elements of order p^l for $l \leq k_p$ and X is $H\mathbb{Z}_{(l)}$-acyclic.

Proof. The hypothesis on the fundamental group tells us that the cofiber X' in Theorem 1.1 is simply connected. Moreover, since X is $H\mathbb{Z}_{(l)}$-acyclic, so is X'. We conclude by Bousfield’s explicit computations in [3, Theorem 7.5] that $P_{\Sigma M} X'$ is contractible. □

For cyclic groups of prime power order, we recover [13, Theorem 6.2].

2.7. Cellularity in the unreduced torsion case

When $G = \mathbb{Z}(p^\infty)$, the same characterization holds in the simply connected case.

Theorem 2.12. Let $M = M(\mathbb{Z}(p^\infty), 1)$. Then a 1-connected space X is M-cellular if and only if X is $H\mathbb{Z}[1/p]$-acyclic.

Proof. The space $M(\mathbb{Z}/p^k, 2)$ is the homotopy cofiber of the map $M \to M$ induced by the multiplication by p^k on $\mathbb{Z}(p^\infty)$, so it is M-cellular. Hence any simply connected p-torsion space is also so (see [4]). □

We will need the following lemma to analyze the class of $M(G, 1)$-cellular spaces for a general abelian torsion group G.

Lemma 2.13. Let A and B be two abelian groups such that there exist a two-dimensional Moore space M of type $M(A \oplus B, 1)$. Then both $M(A, 1)$ and $M(B, 1)$ are M-cellular.

Proof. Let $M \to M(A, 1)$ be any map which induces the projection $A \oplus B \to A$ on the fundamental group. Its homotopy cofiber is $M(B, 2)$, which is ΣM-acyclic. Thus $M(A, 1)$ is M-cellular by Chachólski’s theorem, or rather by its Corollary 1.2. □

Remark 2.14. We point out that it is not clear whether $M(A, 1)$ is a retract of $M(A \oplus B, 1)$, which would provide a direct proof of the above lemma. One can of course construct maps $M(A, 1) \to M(A \oplus B, 1)$ and $M(A \oplus B, 1) \to M(A, 1)$ which induce the canonical inclusion and projection, but the composite might fail to be the identity, compare with Lemma 1.4.

We can now prove the same result as Theorem 2.12 for any $M(G, 1)$ with G-torsion and abelian. Together with Theorem 2.4, it shows that the naive characterization given in the introduction holds for all Moore spaces constructed at the beginning of this section, at least in the 1-connected case.

Theorem 2.15. Let $M = M(G, 1)$ be a two-dimensional Moore space with torsion abelian fundamental group G. Then a 1-connected space X is M-cellular if and only if X is $H\mathbb{Z}_{(l)}$-acyclic.

Proof. By Theorem 2.1 we infer that $T(p)$ is either cyclic, or the direct sum of a divisible group and a cyclic one, for all $p \in J$. Since $\text{Ext}(T(p), T(q))$ is zero, our group G decomposes as a direct sum $\oplus T(p)$ and each of the components contains either a copy of \mathbb{Z}/p^k or one of $\mathbb{Z}(p^\infty)$ as a direct summand. This implies by Lemma 2.13 that either $M(\mathbb{Z}/p^k, 1)$ or $M(\mathbb{Z}(p^\infty), 1)$ is M-cellular. We conclude now by Theorems 2.11 and 2.12. □

3. Counter-examples to the naive characterization

In this section we show that the naive description of cellular spaces fails, even in the simply connected case. It is therefore necessary in general to work with the more complicated characterization of Theorem 1.5 and the notion of quasi-radical groups. Our counter-example relies on the following computation.
3.1. The cellularization of $K(A, 2)$

We compute here the $M(G, 1)$-cellularization of an Eilenberg–Mac Lane space $K(A, 2)$, where A is any abelian group. For simplicity we shall suppose that $K(A, 2)$ is HR-acyclic. This is no longer a restriction, since for calculating $CW_M K(A, 2)$ we can first calculate $\overline{P}_M K(A, 2)$, which is a certain product $K(A', 2) \times K(N', 1)$ by [13, Proposition 6.1] and then apply CW_M. Note that $K(A', 2)$ is HR-acyclic and it is easy to calculate $CW_M K(N', 1)$.

Theorem 3.1. Let $M = M(G, 1)$ be a two-dimensional Moore space and R be the ring associated to G. Suppose that $K(A, 2)$ is HR-acyclic. Then,

$$CW_M K(A, 2) \simeq K(\ker \varphi, 2) \times K(\coker \varphi, 1)$$

where $\varphi : A \to E \to E/TGE$, and E is the “universal” extension for A as in **Definition 1.7**.

Proof. Let us consider the map $K(A, 2) \to K(E, 2)$. It satisfies the conditions of **Theorem 1.1** since its homotopy fiber is $K(\oplus G_{ab}, 1)$, an M-cellular space by **Corollary 1.12**. We must therefore compute $P_{\Sigma M} K(E, 2)$ to identify the cellularization of $K(A, 2)$.

We use now Bousfield’s formulas in [3, Theorem 7.5]. When G_{ab} is an abelian torsion group $P_{\Sigma M} K(E, 2) \simeq K(E/TGE, 2)$. When G_{ab} is not a torsion group, then $P_{\Sigma M} K(E, 2) \simeq K(E/TGE, 2) \times K(B, 3)$ where $B = \prod_J \text{Hom}(Z_{p^\infty}, E)$. But $K(E, 2)$ is HR-acyclic, $R = \oplus_I Z/p$ here, so $B = 0$. Hence, in both cases, $CW_M K(A, 2)$ is the homotopy fiber of the map $K(A, 2) \to K(E/TGE, 2)$. \(\square\)

3.2. Failure of the naive characterization

Let $G = Z[1/p] \ast Z/p$ and $M = M(Z[1/p], 1) \vee M(Z/p, 1)$. Then $G_{ab} = Z[1/p] \oplus Z/p$ is not torsion, the associated set of primes J as introduced in **Notation 1.3** is the empty set, $H = Z$, and $R = 0$, so that all spaces are HR-acyclic. If the naive characterization given in the introduction was true, all simply connected spaces would be M-cellular. But this is false:

Theorem 3.2. Let $G = Z[1/p] \ast Z/p$, and M be the Moore space $M(Z[1/p], 1) \vee M(Z/p, 1)$, so the associated ring R is 0. The space $K(Z, 2)$ is then HR-acyclic, its fundamental group is $Z[1/p] \ast Z/p$-cellular, but $K(Z, 2)$ is not M-cellular.

Proof. Let us compute explicitly $CW_M K(Z, 2)$. We consider the composite map $\alpha : Z \overset{p}{\to} Z \to Z_p^\wedge$, or equivalently $Z \to Z_p^\wedge \overset{p}{\to} Z_p^\wedge$, where both morphisms to the p-adic integers are the completion maps. The short exact sequence of cokernels shows that the cokernel of the composite is $Z_p^\wedge / Z \times Z/p$. Consider the fibration

$$K(Z_p^\wedge / Z \times Z/p, 1) \to K(Z, 2) \overset{\alpha}{\to} K(Z_p^\wedge, 2).$$

Since $K(Z_p^\wedge / Z, 1) \simeq CW_M(Z[1/p], 1) K(Z, 2)$ by **Proposition 2.8**, it is M-cellular, and so is $K(Z/p, 1) \simeq CW_M(Z/p, 1) K(Z, 2)$. The map α satisfies thus the conditions of **Theorem 1.1**. But notice now that the space $K(Z_p^\wedge, 2)$ is ΣM-null, which exhibits $CW_M K(Z, 2)$ as $K(Z_p^\wedge / Z \times Z/p, 1)$. In particular $K(Z, 2)$ is not M-cellular. \(\square\)

The Moore space in the above counter-example has a non-abelian fundamental group. We do not know whether the naive characterization holds in the abelian case.

Question 3.3. Let $M = M(G, 1)$ be a two-dimensional Moore space with G abelian. Is it true that a space X is M-cellular if and only if $\pi_1 X$ is G-cellular and X is HR-acyclic? The question is even open for $G = Z(p^\infty)$.

Acknowledgements

The first author was partially supported by the Spanish Ministry of Education and Science MEC-FEDER grant MTM2004-03629. The second author was partially supported by the program Ramón y Cajal, MEC, Spain, and the MEC-FEDER grant MTM2004-06686.
References